Semi-markov processes with phase-type waiting times

被引:0
|
作者
Hongler, MO [1 ]
Salama, Y [1 ]
机构
[1] ECOLE POLYTECH FED LAUSANNE,DMA,CH-1015 LAUSANNE,SWITZERLAND
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1996年 / 76卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the dynamics of continuous time semi-markov chains with phase-type waiting times. It is shown that the resulting generalized master equation which governs the marginal transition probability density can be written as a high order differential-difference equation; the order being directly related to the number of phases used to characterize the waiting time.
引用
收藏
页码:461 / 462
页数:2
相关论文
共 50 条
  • [1] A PHASE-TYPE SEMI-MARKOV POINT PROCESS
    LATOUCHE, G
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (01): : 77 - 90
  • [2] Semi-Markov Models with Phase-Type Sojourn Distributions
    Titman, Andrew C.
    Sharples, Linda D.
    BIOMETRICS, 2010, 66 (03) : 742 - 752
  • [3] Solving generalized semi-Markov decision processes using continuous phase-type distributions
    Younes, HLS
    Simmons, RG
    PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, : 742 - 747
  • [4] SMC for phase-type stochastic nonlinear semi-Markov jump systems
    Gao, Meng
    Qi, Wenhai
    Cao, Jinde
    Cheng, Jun
    Shi, Kaibo
    Gao, Yunteng
    NONLINEAR DYNAMICS, 2022, 108 (01) : 279 - 292
  • [5] Competing Risks Modeling by Extended Phase-Type Semi-Markov Distributions
    Brenda Garcia-Maya
    Nikolaos Limnios
    Bo Henry Lindqvist
    Methodology and Computing in Applied Probability, 2022, 24 : 309 - 319
  • [6] Competing Risks Modeling by Extended Phase-Type Semi-Markov Distributions
    Garcia-Maya, Brenda
    Limnios, Nikolaos
    Lindqvist, Bo Henry
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (01) : 309 - 319
  • [7] SMC for phase-type stochastic nonlinear semi-Markov jump systems
    Meng Gao
    Wenhai Qi
    Jinde Cao
    Jun Cheng
    Kaibo Shi
    Yunteng Gao
    Nonlinear Dynamics, 2022, 108 : 279 - 292
  • [8] The first-passage times of phase semi-Markov processes
    Zhang, Xuan
    Hou, Zhenting
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (01) : 40 - 48
  • [9] A semi-Markov model with holdout transshipment policy and phase-type exponential lead time
    Zhang, Jiaqi
    Archibald, Thomas W.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 211 (03) : 650 - 657
  • [10] Comparison of level-crossing times for Markov and semi-Markov processes
    Ferreira, Fatima
    Pacheco, Antonio
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (02) : 151 - 157