TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

被引:58
作者
Zhou, J. [1 ]
Hu, X. [2 ]
Zhong, L. [3 ]
Shu, S. [1 ]
Chen, L. [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
two-grid method; Maxwell eigenvalue problem; edge element; FINITE-ELEMENT METHODS; INVERSE ITERATION; MULTILEVEL METHOD; CONVERGENCE; COMPUTATION; EQUATIONS; PRECONDITIONERS; APPROXIMATION; H(CURL); H(DIV);
D O I
10.1137/130919921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
引用
收藏
页码:2027 / 2047
页数:21
相关论文
共 52 条
[51]  
Zhong LQ, 2012, MATH COMPUT, V81, P623
[52]   OPTIMAL ERROR ESTIMATES FOR NEDELEC EDGE ELEMENTS FOR TIME-HARMONIC MAXWELL'S EQUATIONS [J].
Zhong, Liuqiang ;
Shu, Shi ;
Wittum, Gabriel ;
Xu, Jinchao .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) :563-572