TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

被引:58
作者
Zhou, J. [1 ]
Hu, X. [2 ]
Zhong, L. [3 ]
Shu, S. [1 ]
Chen, L. [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
two-grid method; Maxwell eigenvalue problem; edge element; FINITE-ELEMENT METHODS; INVERSE ITERATION; MULTILEVEL METHOD; CONVERGENCE; COMPUTATION; EQUATIONS; PRECONDITIONERS; APPROXIMATION; H(CURL); H(DIV);
D O I
10.1137/130919921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
引用
收藏
页码:2027 / 2047
页数:21
相关论文
共 52 条
[31]  
Hiptmair R, 2002, ACT NUMERIC, V11, P237
[32]   Multilevel method for mixed eigenproblems [J].
Hiptmair, R ;
Neymeyr, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 23 (06) :2141-2164
[33]   Nodal auxiliary space preconditioning in H(curl) and H(div) spaces [J].
Hiptmair, Ralf ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (06) :2483-2509
[35]   ACCELERATION OF A TWO-GRID METHOD FOR EIGENVALUE PROBLEMS [J].
Hu, Xiaozhe ;
Cheng, Xiaoliang .
MATHEMATICS OF COMPUTATION, 2011, 80 (275) :1287-1301
[36]  
Ilic M. M., 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), P682, DOI 10.1109/APS.2002.1017075
[37]   A two-grid stabilization method for solving the steady-state Navier-Stokes equations [J].
Kaya, S ;
Rivière, A .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (03) :728-743
[38]   PARALLEL AUXILIARY SPACE AMG FOR H(curl) PROBLEMS [J].
Kolev, Tzanio V. ;
Vassilevski, Panayot S. .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2009, 27 (05) :604-623
[39]   A MULTILEVEL VARIATIONAL METHOD FOR AU=LAMBDA-BU ON COMPOSITE GRIDS [J].
MANDEL, J ;
MCCORMICK, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 80 (02) :442-452
[40]  
Monk P., 2003, FINITE ELEMENT METHO