TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS

被引:58
作者
Zhou, J. [1 ]
Hu, X. [2 ]
Zhong, L. [3 ]
Shu, S. [1 ]
Chen, L. [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
two-grid method; Maxwell eigenvalue problem; edge element; FINITE-ELEMENT METHODS; INVERSE ITERATION; MULTILEVEL METHOD; CONVERGENCE; COMPUTATION; EQUATIONS; PRECONDITIONERS; APPROXIMATION; H(CURL); H(DIV);
D O I
10.1137/130919921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two new two-grid algorithms are proposed for solving the Maxwell eigenvalue problem. The new methods are based on the two-grid methodology recently proposed by Xu and Zhou [Math. Comp., 70 (2001), pp. 17-25] and further developed by Hu and Cheng [Math. Comp., 80 (2011), pp. 1287-1301] for elliptic eigenvalue problems. The new two-grid schemes reduce the solution of the Maxwell eigenvalue problem on a fine grid to one linear indefinite Maxwell equation on the same fine grid and an original eigenvalue problem on a much coarser grid. The new schemes, therefore, save total computational cost. The error estimates reveals that the two-grid methods maintain asymptotically optimal accuracy, and the numerical experiments presented confirm the theoretical results.
引用
收藏
页码:2027 / 2047
页数:21
相关论文
共 52 条
[1]  
[Anonymous], 1988, SCI PAPERS COLL ARTS
[2]   Multilevel preconditioned iterative eigensolvers for Maxwell eigenvalue problems [J].
Arbenz, P ;
Geus, R .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (02) :107-121
[3]  
Arbenz P, 2001, PHYS REV SPEC TOP-AC, V4, DOI [10.1103/PhysRevSTAB.4.022001, 10.1103/PhysRevSTAB4.022001]
[4]  
Arnold DN, 2000, NUMER MATH, V85, P197, DOI 10.1007/s002110000137
[5]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[6]   ANALYSIS OF A MULTILEVEL INVERSE ITERATION PROCEDURE FOR EIGENVALUE PROBLEMS [J].
BANK, RE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (05) :886-898
[7]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[8]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[9]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[10]   Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes [J].
Buffa, Annalisa ;
Houston, Paul ;
Perugia, Ilaria .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 204 (02) :317-333