Guidelines for using sigQC for systematic evaluation of gene signatures

被引:21
作者
Dhawan, Andrew [1 ,2 ]
Barberis, Alessandro [1 ,2 ]
Cheng, Wei-Chen [1 ,2 ]
Domingo, Enric [1 ,2 ]
West, Catharine [3 ]
Maughan, Tim [1 ,2 ]
Scott, Jacob G. [4 ]
Harris, Adrian L. [1 ,2 ]
Buffa, Francesca M. [1 ,2 ]
机构
[1] Univ Oxford, CRUK Oxford Inst, MRC, Computat Biol & Integrat Genom Lab, Oxford, England
[2] Univ Oxford, Dept Oncol, Oxford, England
[3] Univ Manchester, Div Canc Studies, Manchester, Lancs, England
[4] Cleveland Clin, Translat Hematol & Oncol Res, Cleveland, OH 44106 USA
基金
欧洲研究理事会; 英国医学研究理事会;
关键词
PROGNOSIS; REVEALS; BIOCONDUCTOR; CANCER;
D O I
10.1038/s41596-019-0136-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the increased use of next-generation sequencing generating large amounts of genomic data, gene expression signatures are becoming critically important tools for the interpretation of these data, and are poised to have a substantial effect on diagnosis, management, and prognosis for a number of diseases. It is becoming crucial to establish whether the expression patterns and statistical properties of sets of genes, or gene signatures, are conserved across independent datasets. Conversely, it is necessary to compare established signatures on the same dataset to better understand how they capture different clinical or biological characteristics. Here we describe how to use sigQC, a tool that enables a streamlined, systematic approach for the evaluation of previously obtained gene signatures across multiple gene expression datasets. We implemented sigQC in an R package, making it accessible to users who have knowledge of file input/output and matrix manipulation in R and a moderate grasp of core statistical principles. SigQC has been adopted in basic biology and translational studies, including, but not limited to, the evaluation of multiple gene signatures for potential clinical use as cancer biomarkers. This protocol uses a previously obtained signature for breast cancer metastasis as an example to illustrate the critical quality control steps involved in evaluating its expression, variability, and structure in breast tumor RNA-sequencing data, a different dataset from that in which the signature was originally derived. We demonstrate how the outputs created from sigQC can be used for the evaluation of gene signatures on large-scale gene expression datasets.
引用
收藏
页码:1377 / 1400
页数:24
相关论文
共 35 条
  • [1] Deciphering Signatures of Mutational Processes Operative in Human Cancer
    Alexandrov, Ludmil B.
    Nik-Zainal, Serena
    Wedge, David C.
    Campbell, Peter J.
    Stratton, Michael R.
    [J]. CELL REPORTS, 2013, 3 (01): : 246 - 259
  • [2] [Anonymous], 2006, MCLUST VERSION 3 R P
  • [3] [Anonymous], AN READ STAND TCGA D
  • [4] Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1
    Barbie, David A.
    Tamayo, Pablo
    Boehm, Jesse S.
    Kim, So Young
    Moody, Susan E.
    Dunn, Ian F.
    Schinzel, Anna C.
    Sandy, Peter
    Meylan, Etienne
    Scholl, Claudia
    Froehling, Stefan
    Chan, Edmond M.
    Sos, Martin L.
    Michel, Kathrin
    Mermel, Craig
    Silver, Serena J.
    Weir, Barbara A.
    Reiling, Jan H.
    Sheng, Qing
    Gupta, Piyush B.
    Wadlow, Raymond C.
    Le, Hanh
    Hoersch, Sebastian
    Wittner, Ben S.
    Ramaswamy, Sridhar
    Livingston, David M.
    Sabatini, David M.
    Meyerson, Matthew
    Thomas, Roman K.
    Lander, Eric S.
    Mesirov, Jill P.
    Root, David E.
    Gilliland, D. Gary
    Jacks, Tyler
    Hahn, William C.
    [J]. NATURE, 2009, 462 (7269) : 108 - U122
  • [5] Characteristics and Validation Techniques for PCA-Based Gene-Expression Signatures
    Berglund, Anders E.
    Welsh, Eric A.
    Eschrich, Steven A.
    [J]. INTERNATIONAL JOURNAL OF GENOMICS, 2017, 2017
  • [6] Large meta-analysis of multiple cancers reveals a common, compact and highly prognostic hypoxia metagene
    Buffa, F. M.
    Harris, A. L.
    West, C. M.
    Miller, C. J.
    [J]. BRITISH JOURNAL OF CANCER, 2010, 102 (02) : 428 - 435
  • [7] An Epithelial-Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance
    Byers, Lauren Averett
    Diao, Lixia
    Wang, Jing
    Saintigny, Pierre
    Girard, Luc
    Peyton, Michael
    Shen, Li
    Fan, Youhong
    Giri, Uma
    Tumula, Praveen K.
    Nilsson, Monique B.
    Gudikote, Jayanthi
    Tran, Hai
    Cardnell, Robert J. G.
    Bearss, David J.
    Warner, Steven L.
    Foulks, Jason M.
    Kanner, Steven B.
    Gandhi, Varsha
    Krett, Nancy
    Rosen, Steven T.
    Kim, Edward S.
    Herbst, Roy S.
    Blumenschein, George R.
    Lee, J. Jack
    Lippman, Scott M.
    Ang, K. Kian
    Mills, Gordon B.
    Hong, Waun K.
    Weinstein, John N.
    Wistuba, Ignacio I.
    Coombes, Kevin R.
    Minna, John D.
    Heymach, John V.
    [J]. CLINICAL CANCER RESEARCH, 2013, 19 (01) : 279 - 290
  • [8] Chen H. H., 2011, Proceedings of the 2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS 2011), P154, DOI 10.1109/GENSiPS.2011.6169468
  • [9] Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors
    Dhawan, Andrew
    Scott, Jacob G.
    Harris, Adrian L.
    Buffa, Francesca M.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [10] BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis
    Durinck, S
    Moreau, Y
    Kasprzyk, A
    Davis, S
    De Moor, B
    Brazma, A
    Huber, W
    [J]. BIOINFORMATICS, 2005, 21 (16) : 3439 - 3440