Assessment of an Adaptive Load Forecasting Methodology in a Smart Grid Demonstration Project

被引:12
|
作者
Vazquez, Ricardo [1 ]
Amaris, Hortensia [1 ]
Alonso, Monica [1 ]
Lopez, Gregorio [2 ]
Ignacio Moreno, Jose [2 ]
Olmeda, Daniel [1 ]
Coca, Javier [3 ]
机构
[1] Univ Carlos III Madrid, Dept Elect Engn, Avda Univ 30, Madrid 28911, Spain
[2] Univ Carlos III Madrid, Dept Telemat Engn, Avda Univ 30, Madrid 28911, Spain
[3] Union Fenosa Distribuc, Avda San Luis 77, Madrid 28033, Spain
来源
ENERGIES | 2017年 / 10卷 / 02期
关键词
short-term load forecasting; smart grids; Machine-to-Machine (M2M) communications; time series; distribution networks; MODELS; SYSTEM; REQUIREMENTS;
D O I
10.3390/en10020190
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper presents the implementation of an adaptive load forecasting methodology in two different power networks from a smart grid demonstration project deployed in the region of Madrid, Spain. The paper contains an exhaustive comparative study of different short-term load forecast methodologies, addressing the methods and variables that are more relevant to be applied for the smart grid deployment. The evaluation followed in this paper suggests that the performance of the different methods depends on the conditions of the site in which the smart grid is implemented. It is shown that some non-linear methods, such as support vector machine with a radial basis function kernel and extremely randomized forest offer good performance using only 24 lagged load hourly values, which could be useful when the amount of data available is limited due to communication problems in the smart grid monitoring system. However, it has to be highlighted that, in general, the behavior of different short-term load forecast methodologies is not stable when they are applied to different power networks and that when there is a considerable variability throughout the whole testing period, some methods offer good performance in some situations, but they fail in others. In this paper, an adaptive load forecasting methodology is proposed to address this issue improving the forecasting performance through iterative optimization: in each specific situation, the best short-term load forecast methodology is chosen, resulting in minimum prediction errors.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A novel integrated price and load forecasting method in smart grid environment based on multi-level structure
    Zhang, Yang
    Deng, Caibo
    Zhao, Ran
    Leto, Sebastian
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 95
  • [42] Efficient grid management: smart forecasting of short-term power load using PSO-LSTM
    Badjan, Ansumana
    Rashed, Ghamgeen Izat
    Bahageel, Ahmed O. M.
    Gony, Hashim
    Shaheen, Husam, I
    Tuaimah, Firas Mohammed
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):
  • [43] A novel cloud-edge collaboration based short-term load forecasting method for smart grid
    Wang, Ai-Xia
    Li, Jing-Jiao
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [44] Electricity Market Price Forecasting in a Price-responsive Smart Grid Environment
    Motamedi, Amir
    Zareipour, Hamidreza
    Rosehart, William D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [45] Short-Term Load Forecasting in Smart Grid: A Combined CNN and K-Means Clustering Approach
    Dong, Xishuang
    Qian, Lijun
    Huang, Lei
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2017, : 119 - 125
  • [46] Load Forecasting in Electrical Distribution Grid of Medium Voltage
    Chemetova, Svetlana
    Santos, Paulo
    Ventim-Neves, Mario
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 340 - 349
  • [47] Application of switched adaptive system to load forecasting
    Maia, Carlos Andrey
    Goncalves, Mateus Mariano
    ELECTRIC POWER SYSTEMS RESEARCH, 2008, 78 (04) : 721 - 727
  • [48] A self-partitioning local neuro fuzzy model for short-term load forecasting in smart grids
    Tavassoli-Hojati, Z.
    Ghaderi, S. F.
    Iranmanesh, H.
    Hilber, P.
    Shayesteh, E.
    ENERGY, 2020, 199
  • [49] Smart-Meter Big Data for Load Forecasting: An Alternative Approach to Clustering
    Alemazkoor, Negin
    Tootkaboni, Mazdak
    Nateghi, Roshanak
    Louhghalam, Arghavan
    IEEE ACCESS, 2022, 10 : 8377 - 8387
  • [50] Smart grid reliability evaluation and assessment
    Mashal, Ibrahim
    KYBERNETES, 2023, 52 (09) : 3261 - 3291