Simultaneous Resolvability in Families of Corona Product Graphs

被引:1
作者
Ramirez-Cruz, Yunior [1 ]
Estrada-Moreno, Alejandro [1 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, E-43007 Tarragona, Spain
关键词
Simultaneous metric dimension; Corona product; Simultaneous adjacency dimension; METRIC DIMENSION; DOMINATION;
D O I
10.1007/s40840-016-0412-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph family defined on a common vertex set V and let d be a distance defined on every graph G is an element of G . A set S subset of V is said to be a simultaneous metric generator for G if for every G is an element of G and every pair of different vertices u,v is an element of V there exists s is an element of S such that d(s,u) not equal d(s,v) . The simultaneous metric dimension of G is the smallest integer k such that there is a simultaneous metric generator for G of cardinality k. We study the simultaneous metric dimension of families composed by corona product graphs. Specifically, we focus on the case of two particular distances defined on every G is an element of G , namely the geodesic distance d(G) and the distance d(G,2) : V x V -> N boolean OR {0} defined as d(G,2)(x,y) = min{d(G)(x,y), 2}.
引用
收藏
页码:1541 / 1560
页数:20
相关论文
共 28 条
  • [1] THE IRREGULARITY OF GRAPHS UNDER GRAPH OPERATIONS
    Abdo, Hosam
    Dimitrov, Darko
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (02) : 263 - 278
  • [2] Barragan-Ramirez G., 2014, ELECT NOTES DISCRETE, V46, P27
  • [3] Brigham R.C., 2003, Math. Bohem., V128, P25, DOI DOI 10.21136/MB.2003.133935
  • [4] FACTOR DOMINATION IN GRAPHS
    BRIGHAM, RC
    DUTTON, RD
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 127 - 136
  • [5] Toughness of the corona of two graphs
    Casablanca, R. M.
    Dianez, A.
    Garica-Vazquez, P.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2011, 88 (13) : 2697 - 2706
  • [6] The k-Metric Dimension of Corona Product Graphs
    Estrada-Moreno, A.
    Yero, I. G.
    Rodriguez-Velazquez, J. A.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 : S135 - S156
  • [7] Feng M., 2012, FRACTIONAL METRIC DI
  • [8] Fernau Henning, 2014, Computer Science - Theory and Applications. 9th International Computer Science Symposium in Russia, CSR 2014. Proceedings: LNCS 8476, P153, DOI 10.1007/978-3-319-06686-8_12
  • [9] Fernau H., 2013, ADJACENCY METRIC DIM
  • [10] Furmanczyk H., 2013, Advances and Applications in Discrete Mathematics, V11, P103