On the second-order Frechet derivatives of eigenvalues of Sturm-Liouville problems in potentials

被引:3
作者
Guo, Shuyuan [1 ]
Xu, Guixin [1 ]
Zhang, Meirong [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Sturm-Liouville problem; Eigenvalue; Eigenfunction; Potential; Frechet derivatives; Concavity of eigenvalue in potential; LINEAR-SYSTEMS; WEAK TOPOLOGY; DEPENDENCE; CONTINUITY;
D O I
10.1007/s00013-019-01351-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The works of V.A. Vinokurov have shown that eigenvalues and normalized eigenfunctions of Sturm-Liouville problems are analytic in potentials, considered as mappings from the Lebesgue space to the space of real numbers and the Banach space of continuous functions respectively. Moreover, the first-order Frechet derivatives are known and play an important role in many problems. In this paper, we will find the second-order Frechet derivatives of eigenvalues in potentials, which are also proved to be negative definite quadratic forms for some cases.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 19 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1967, ACTUALITES SCI IND
[3]  
[Anonymous], 2005, MATH SURVEYS MONOGRA
[4]  
Courant R, 1953, METHODS MATH PHYSICS, P397
[5]  
Dunford N., 1958, Linear Operators. Part I: General Theory
[6]  
Ilyasov Y. S., 2018, ARXIV182900229V1
[7]   On nonlinear boundary value problem corresponding to N-dimensional inverse spectral problem [J].
Ilyasov, Y. Sh ;
Valeev, N. F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (08) :4533-4543
[8]   Dependence of eigenvalues on the problem [J].
Kong, Q ;
Wu, H ;
Zettl, A .
MATHEMATISCHE NACHRICHTEN, 1997, 188 :173-201
[9]   Dependence of the nth Sturm-Liouville eigenvalue on the problem [J].
Kong, QK ;
Wu, HY ;
Zettl, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :328-354
[10]   Continuity in weak topology: First order linear systems of ODE [J].
Meng, Gang ;
Zhang, Mei Rong .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (07) :1287-1298