Convolutional neural networks with hierarchical context transfer for high-resolution spatiotemporal predictions

被引:0
作者
Mukhina, Ksenia D. [1 ]
Visheratin, Alexander A. [2 ,3 ]
Nasonov, Denis [2 ]
机构
[1] Tallinn Univ, Sch Digital Technol, Tallinn, Estonia
[2] ITMO Univ, St Petersburg, Russia
[3] Beehive AI, Ann Arbor, MI USA
来源
PROCEEDINGS OF THE 9TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ANALYTICS FOR BIG GEOSPATIAL DATA, BIGSPATIAL 2020 | 2020年
基金
俄罗斯科学基金会;
关键词
convolutional neural network; hierarchical context transfer; spatiotemporal prediction; social media data; city state prediction;
D O I
10.1145/3423336.3429346
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we consider a problem of predicting the next state of a given area using retrospective information. The proposed concept of hierarchical context transfer (HCT) operates on several spatial levels of the input data to overcome major issues of next state prediction problems - density variability, a significant difference between consecutive states and computational complexity. The custom loss function allows assimilating contexts of spatial levels into each other to further improve prediction quality. The proposed deep learning model (HCT-CNN) allows generating precise high-resolution predictions of the target area. We evaluate our model on the use case of predicting the next state of the urban area using a large dataset for six cities - New York, Moscow, London, Tokyo, Saint Petersburg, and Vienna. Experimental results demonstrate that HCT-CNN generates low- and high-resolution predictions of better quality than existing methods.
引用
收藏
页数:10
相关论文
共 28 条
  • [1] Support vector machines for spatiotemporal tornado prediction
    Adrianto, Indra
    Trafalis, Theodore B.
    Lakshmanan, Valliappa
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2009, 38 (07) : 759 - 776
  • [2] Duan L., 2017, Proceedings of the International Conference on Information and Knowledge Engineering IKE, P61
  • [3] Finn C, 2016, ADV NEUR IN, V29
  • [4] TIME-SERIES ANALYSIS - FORECASTING AND CONTROL - BOX,GEP AND JENKINS,GM
    GEURTS, M
    [J]. JOURNAL OF MARKETING RESEARCH, 1977, 14 (02) : 269 - 269
  • [5] SHORT-TERM PREDICTION OF TRAFFIC VOLUME IN URBAN ARTERIALS
    HAMED, MM
    ALMASAEID, HR
    SAID, ZMB
    [J]. JOURNAL OF TRANSPORTATION ENGINEERING-ASCE, 1995, 121 (03): : 249 - 254
  • [6] Ioffe S, 2015, Arxiv, DOI [arXiv:1502.03167, 10.48550/arXiv.1502.03167]
  • [7] Kumar Manoj, 2020, VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation
  • [8] Liang YX, 2020, Arxiv, DOI arXiv:2003.00895
  • [9] UrbanFM: Inferring Fine-Grained Urban Flows
    Liang, Yuxuan
    Ouyang, Kun
    Jing, Lin
    Ruan, Sijie
    Liu, Ye
    Zhang, Junbo
    Rosenblum, David S.
    Zheng, Yu
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3132 - 3142
  • [10] Lin ZQ, 2019, AAAI CONF ARTIF INTE, P1020