Sources contributing to background surface ozone in the US Intermountain West

被引:99
作者
Zhang, L. [1 ,2 ]
Jacob, D. J. [2 ]
Yue, X. [3 ]
Downey, N. V. [4 ]
Wood, D. A. [5 ]
Blewitt, D. [5 ]
机构
[1] Peking Univ, Lab Climate & Ocean Atmosphere Sci, Dept Atmospher & Ocean Sci, Sch Phys, Beijing 100871, Peoples R China
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA
[4] Earth Syst Sci LLC, Houston, TX USA
[5] BP Amer Prod Co, Houston, TX USA
关键词
UNITED-STATES; TROPOSPHERIC OZONE; ATMOSPHERIC COMPOSITION; NATURAL EMISSIONS; FIRE EMISSIONS; CHEMISTRY; POLLUTION; POLICY; PHOTOCHEMISTRY; NITROGEN;
D O I
10.5194/acp-14-5295-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We quantify the sources contributing to background surface ozone concentrations in the US Intermountain West by using the GEOS-Chem chemical transport model with 1 / 2A degrees x 2 / 3A degrees horizontal resolution to interpret the Clean Air Status and Trends Network (CASTNet) ozone monitoring data for 2006-2008. We isolate contributions from lightning, wildfires, the stratosphere, and California pollution. Lightning emissions are constrained by observations and wildfire emissions are estimated from daily fire reports. We find that lightning increases mean surface ozone in summer by 10 ppbv in the Intermountain West, with moderate variability. Wildfire plumes generate high-ozone events in excess of 80 ppbv in GEOS-Chem, but CASTNet ozone observations in the Intermountain West show no enhancements during these events nor do they show evidence of regional fire influence. Models may overestimate ozone production in fresh fire plumes because of inadequate chemistry and grid-scale resolution. The highest ozone concentrations observed in the Intermountain West (> 75 ppbv) in spring are associated with stratospheric intrusions. The model captures the timing of these intrusions but not their magnitude, reflecting numerical diffusion intrinsic to Eulerian models. This can be corrected statistically through a relationship between model bias and the model-diagnosed magnitude of stratospheric influence; with this correction, models may still be useful to forecast and interpret high-ozone events from stratospheric intrusions. We show that discrepancy between models in diagnosing stratospheric influence is due in part to differences in definition, i.e., whether stratospheric ozone is diagnosed as produced in the stratosphere (GEOS-Chem definition) or as transported from above the tropopause. The latter definition can double the diagnosed stratospheric influence in surface air by labeling as 'stratospheric' any ozone produced in the troposphere and temporarily transported to the stratosphere. California pollution influence in the Intermountain West frequently exceeds 10 ppbv but is generally not correlated with the highest ozone events.
引用
收藏
页码:5295 / 5309
页数:15
相关论文
共 64 条
[1]   Emission factors for open and domestic biomass burning for use in atmospheric models [J].
Akagi, S. K. ;
Yokelson, R. J. ;
Wiedinmyer, C. ;
Alvarado, M. J. ;
Reid, J. S. ;
Karl, T. ;
Crounse, J. D. ;
Wennberg, P. O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (09) :4039-4072
[2]   Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations [J].
Alvarado, M. J. ;
Logan, J. A. ;
Mao, J. ;
Apel, E. ;
Riemer, D. ;
Blake, D. ;
Cohen, R. C. ;
Min, K-E ;
Perring, A. E. ;
Browne, E. C. ;
Wooldridge, P. J. ;
Diskin, G. S. ;
Sachse, G. W. ;
Fuelberg, H. ;
Sessions, W. R. ;
Harrigan, D. L. ;
Huey, G. ;
Liao, J. ;
Case-Hanks, A. ;
Jimenez, J. L. ;
Cubison, M. J. ;
Vay, S. A. ;
Weinheimer, A. J. ;
Knapp, D. J. ;
Montzka, D. D. ;
Flocke, F. M. ;
Pollack, I. B. ;
Wennberg, P. O. ;
Kurten, A. ;
Crounse, J. ;
St Clair, J. M. ;
Wisthaler, A. ;
Mikoviny, T. ;
Yantosca, R. M. ;
Carouge, C. C. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (20) :9739-9760
[3]   Emission of trace gases and aerosols from biomass burning [J].
Andreae, MO ;
Merlet, P .
GLOBAL BIOGEOCHEMICAL CYCLES, 2001, 15 (04) :955-966
[4]  
[Anonymous], 2010, 40 CFR Part 50, V75, P2938
[5]   Public Health, Climate, and Economic Impacts of Desulfurizing Jet Fuel [J].
Barrett, Steven R. H. ;
Yim, Steve H. L. ;
Gilmore, Christopher K. ;
Murray, Lee T. ;
Kuhn, Stephen R. ;
Tai, Amos P. K. ;
Yantosca, Robert M. ;
Byun, Daewon W. ;
Ngan, Fong ;
Li, Xiangshang ;
Levy, Jonathan I. ;
Ashok, Akshay ;
Koo, Jamin ;
Wong, Hsin Min ;
Dessens, Olivier ;
Balasubramanian, Sathya ;
Fleming, Gregg G. ;
Pearlson, Matthew N. ;
Wollersheim, Christoph ;
Malina, Robert ;
Arunachalam, Saravanan ;
Binkowski, Francis S. ;
Leibensperger, Eric M. ;
Jacob, Daniel J. ;
Hileman, James I. ;
Waitz, Ian A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (08) :4275-4282
[6]   Direct measurements of the convective recycling of the upper troposphere [J].
Bertram, Timothy H. ;
Perring, Anne E. ;
Wooldridge, Paul J. ;
Crounse, John D. ;
Kwan, Alan J. ;
Wennberg, Paul O. ;
Scheuer, Eric ;
Dibb, Jack ;
Avery, Melody ;
Sachse, Glen ;
Vay, Stephanie A. ;
Crawford, James H. ;
McNaughton, Cameron S. ;
Clarke, Antony ;
Pickering, Kenneth E. ;
Fuelberg, Henry ;
Huey, Greg ;
Blake, Donald R. ;
Singh, Hanwant B. ;
Hall, Samuel R. ;
Shetter, Richard E. ;
Fried, Alan ;
Heikes, Brian G. ;
Cohen, Ronald C. .
SCIENCE, 2007, 315 (5813) :816-820
[7]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[8]  
Boccippio DJ, 2001, MON WEATHER REV, V129, P108, DOI 10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO
[9]  
2
[10]   Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model [J].
Chen, D. ;
Wang, Y. ;
McElroy, M. B. ;
He, K. ;
Yantosca, R. M. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (11) :3825-3839