A Posteriori Error Estimates of Edge Residual type of Finite Element Method for Nonmonotone Quasi-Linear Elliptic Problems

被引:4
作者
Guo, Liming [1 ]
Huang, Ziping [1 ]
Wang, Cheng [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
基金
美国国家科学基金会;
关键词
a posteriori error estimates; edge residuals; quasi-linear elliptic problems; APPROXIMATIONS; ALGORITHM; EQUATIONS;
D O I
10.1002/num.21838
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the edge residual-based a posteriori error estimates of conforming linear finite element method for nonmonotone quasi-linear elliptic problems. It is proven that edge residuals dominate a posteriori error estimates. Up to higher order perturbations, edge residuals can act as a posteriori error estimators. The global reliability and local efficiency bounds are established both in H-1-norm and L-2-norm. Numerical experiments are provided to illustrate the performance of the proposed error estimators. (c) 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 813-837, 2014
引用
收藏
页码:813 / 837
页数:25
相关论文
共 33 条
[1]  
Adams R., 1985, Sobolev Spaces
[2]  
Ainsworth M., 2000, PUR AP M-WI
[3]  
Bangerth W., 2003, LEC MATH
[4]  
Bi C. J., J SCI COMPU IN PRESS
[5]   Two-Grid Discontinuous Galerkin Method for Quasi-Linear Elliptic Problems [J].
Bi, Chunjia ;
Ginting, Victor .
JOURNAL OF SCIENTIFIC COMPUTING, 2011, 49 (03) :311-331
[6]   A residual-type a posteriori error estimate of finite volume element method for a quasi-linear elliptic problem [J].
Bi, Chunjia ;
Ginting, Victor .
NUMERISCHE MATHEMATIK, 2009, 114 (01) :107-132
[7]   RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS [J].
Cai, Zhiqiang ;
Zhang, Shun .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) :2132-2156
[8]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[9]   A finite volume element method for a non-linear elliptic problem [J].
Chatzipantelidis, P ;
Ginting, V ;
Lazarov, RD .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (5-6) :515-546
[10]  
Chen L., IFEM INNOVA IN PRESS