An integrated particle swarm optimizer for optimization of truss structures with discrete variables

被引:22
|
作者
Mortazavi, Ali [1 ]
Togan, Vedat [2 ]
Nuhoglu, Ayhan [1 ]
机构
[1] Ege Univ, Dept Civil Engn, TR-35100 Izmir, Turkey
[2] Karadeniz Tech Univ, Dept Civil Engn, TR-61080 Trabzon, Turkey
关键词
optimization; truss structures; particle swarm optimization; weighted particle; constraint handling; GENETIC ALGORITHM; TOPOLOGY OPTIMIZATION; DESIGN; STRATEGIES;
D O I
10.12989/sem.2017.61.3.359
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 50 条
  • [21] A multi-stage particle swarm for optimum design of truss structures
    Talatahari, S.
    Kheirollahi, M.
    Farahmandpour, C.
    Gandomi, A. H.
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (05) : 1297 - 1309
  • [22] A novel particle swarm optimizer hybridized with extremal optimization
    Chen, Min-Rong
    Li, Xia
    Zhang, Xi
    Lu, Yong-Zai
    APPLIED SOFT COMPUTING, 2010, 10 (02) : 367 - 373
  • [23] Truss optimization with discrete design variables: a critical review
    Stolpe, Mathias
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 53 (02) : 349 - 374
  • [24] Truss optimization with discrete design variables: a critical review
    Mathias Stolpe
    Structural and Multidisciplinary Optimization, 2016, 53 : 349 - 374
  • [25] A new probabilistic particle swarm optimization algorithm for size optimization of spatial truss structures
    Kaveh, A.
    Nasrollahi, A.
    INTERNATIONAL JOURNAL OF CIVIL ENGINEERING, 2014, 12 (1A) : 1 - 13
  • [26] Optimal design of truss structures using a hybrid method based on particle swarm optimizer and cultural algorithm
    Jafari, Malihe
    Salajegheh, Eysa
    Salajegheh, Javad
    STRUCTURES, 2021, 32 : 391 - 405
  • [27] Discrete particle swarm optimization for identifying community structures in signed social networks
    Cai, Qing
    Gong, Maoguo
    Shen, Bo
    Ma, Lijia
    Jiao, Licheng
    NEURAL NETWORKS, 2014, 58 : 4 - 13
  • [28] An adaptive elitist differential evolution for optimization of truss structures with discrete design variables
    Ho-Huu, V.
    Nguyen-Thoi, T.
    Vo-Duy, T.
    Nguyen-Trang, T.
    COMPUTERS & STRUCTURES, 2016, 165 : 59 - 75
  • [29] Truss Sizing Optimization with a Diversity-Enhanced Cyclic Neighborhood Network Topology Particle Swarm Optimizer
    Kim, Tae-Hyoung
    Byun, Jung-In
    MATHEMATICS, 2020, 8 (07)
  • [30] A Multiobjective Particle Swarm Optimizer for Constrained Optimization
    Yen, Gary G.
    Leong, Wen-Fung
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (01) : 1 - 23