Weakly SS-Quasinormal Minimal Subgroups and the Nilpotency of a Finite Group

被引:0
作者
Zhao, T. [1 ]
Zhang, X. [2 ]
机构
[1] Shandong Univ Technol, Sch Sci, Zibo, Shandong, Peoples R China
[2] Huaiyin Normal Univ, Sch Math Sci, Hangzhou, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
EMBEDDED SUBGROUPS;
D O I
10.1007/s11253-014-0923-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subgroup H is said to be an s-permutable subgroup of a finite group G provided that the equality HP =PH holds for every Sylow subgroup P of G. Moreover, H is called SS-quasinormal in G if there exists a supplement B of H to G such that H permutes with every Sylow subgroup of B. We show that H is weakly SS-quasinormal in G if there exists a normal subgroup T of G such that HT is s-permutable and H \ T is SS-quasinormal in G. We study the influence of some weakly SS-quasinormal minimal subgroups on the nilpotency of a finite group G. Numerous results known from the literature are unified and generalized.
引用
收藏
页码:209 / 217
页数:9
相关论文
共 21 条
  • [1] On minimal subgroups of finite groups
    Ballester-Bolinches, A
    Pedraza-Aguilera, MC
    [J]. ACTA MATHEMATICA HUNGARICA, 1996, 73 (04) : 335 - 342
  • [2] Finite groups with some C-normal minimal subgroups
    Ballester-Bolinches, A
    Wang, YM
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (02) : 121 - 127
  • [3] FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL
    BUCKLEY, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) : 15 - &
  • [4] THE INFLUENCE OF MINIMAL P-SUBGROUPS ON THE STRUCTURE OF FINITE-GROUPS
    DERR, JB
    DESKINS, WE
    MUKHERJEE, NP
    [J]. ARCHIV DER MATHEMATIK, 1985, 45 (01) : 1 - 4
  • [5] Deskins WE., 1963, MATH Z, V82, P125, DOI DOI 10.1007/BF01111801
  • [6] Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
  • [7] Gorenstein D., 1980, Finite Groups, V2nd
  • [8] FINITE GROUPS WITH SOME WEAKLY S-SUPPLEMENTED SUBGROUPS
    Guo, Wenbin
    Shum, K. P.
    Xie, Fengyan
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2011, 53 : 211 - 222
  • [9] Finite groups with given s-embedded and n-embedded subgroups
    Guo, Wenbin
    Skiba, Alexander N.
    [J]. JOURNAL OF ALGEBRA, 2009, 321 (10) : 2843 - 2860
  • [10] On solubility and supersolubility of some classes of finite groups
    Guo WenBin
    Shum, Kar Ping
    Skiba, Alexander N.
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (02): : 272 - 286