A best possible result for the square of a 2-block to be hamiltonian

被引:1
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst Log & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, EU, Austria
基金
奥地利科学基金会;
关键词
Square of graphs; Hamiltonian cycles; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2020.112158
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for any choice of four different vertices x(1), ..., x(4) in a 2-block G of order p > 3, there is a hamiltonian cycle in G(2) containing four different edges x(i)y(i) of E(G) for certain vertices y(i), i = 1, 2, 3, 4. This result is best possible. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 11 条
[1]  
Alstrup S, 2018, SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1645
[2]  
Bondy J.A., 2008, GTM 244
[3]   Revisiting the Hamiltonian theme in the square of a block: the case of DT-graphs [J].
Chia, Gek L. ;
Ekstein, Jan ;
Fleischner, Herbert .
JOURNAL OF COMBINATORICS, 2018, 9 (01) :119-161
[4]  
Ekstein J, 2011, ELECTRON J COMB, V18
[5]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
[6]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P17, DOI 10.1016/0095-8956(74)90090-2
[7]   HAMILTONIAN TOTAL GRAPHS [J].
FLEISCHNER, H ;
HOBBS, AM .
MATHEMATISCHE NACHRICHTEN, 1975, 68 :59-82
[8]   SQUARE OF GRAPHS, HAMILTONICITY AND PANCYCLICITY, HAMILTONIAN CONNECTEDNESS AND PANCONNECTEDNESS ARE EQUIVALENT CONCEPTS [J].
FLEISCHNER, H .
MONATSHEFTE FUR MATHEMATIK, 1976, 82 (02) :125-149
[9]  
Fleischner H, 2019, J COMB, V10, P163
[10]   A short proof of Fleischner's theorem [J].
Georgakopoulos, Agelos .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6632-6634