Supramolecular structure in full-length Alzheimer's β-amyloid fibrils:: Evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance

被引:278
作者
Balbach, JJ
Petkova, AT
Oyler, NA
Antzutkin, ON
Gordon, DJ
Meredith, SC
Tycko, R
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[2] Lulea Univ Technol, Div Inorgan Chem, S-95187 Lulea, Sweden
[3] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[4] Univ Chicago, Dept Pathol, Chicago, IL 60637 USA
关键词
D O I
10.1016/S0006-3495(02)75244-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report constraints on the supramolecular structure of amyloid fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)) obtained from solid-state nuclear magnetic resonance (NMR) measurements of intermolecular dipole-dipole couplings between C-13 labels at 11 carbon sites in residues 2 through 39. The measurements are carried out under magic-angle spinning conditions, using the constant-time finite-pulse radiofrequency-driven recoupling (fpRFDR-CT) technique. We also present one-dimensional C-13 magic-angle spinning NMR spectra of the labeled Abeta(1-40). samples. The fpRFDR-CT data reveal nearest-neighbor intermolecular distances of 4.8 +/- 0.5 Angstrom for carbon sites from residues 12 through 39, indicating a parallel alignment of neighboring peptide chains in the predominantly beta-sheet structure of the amyloid fibrils. The one-dimensional NMR spectra indicate structural order at these sites. The fpRFDR-CT data and NMR spectra also indicate structural disorder in the N-terminal segment of Abeta(1-40), including the first nine residues. These results place strong constraints on any molecular-level structural model for full-length beta-amyloid fibrils.
引用
收藏
页码:1205 / 1216
页数:12
相关论文
共 59 条
[11]   Molecular modeling of the Aβ1-42 peptide from Alzheimer's disease [J].
Chaney, MO ;
Webster, SD ;
Kuo, YM ;
Roher, AE .
PROTEIN ENGINEERING, 1998, 11 (09) :761-767
[12]   Designing conditions for in vitro formation of amyloid protofilaments and fibrils [J].
Chiti, F ;
Webster, P ;
Taddei, N ;
Clark, A ;
Stefani, M ;
Ramponi, G ;
Dobson, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3590-3594
[13]   Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid [J].
Conway, KA ;
Harper, JD ;
Lansbury, PT .
BIOCHEMISTRY, 2000, 39 (10) :2552-2563
[14]   Determination of peptide amide configuration in a model amyloid fibril by solid-state NMR [J].
Costa, PR ;
Kocisko, DA ;
Sun, BQ ;
Lansbury, PT ;
Griffin, RG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (43) :10487-10493
[15]   Structure of Bordetella pertussis virulence factor P.69 pertactin [J].
Emsley, P ;
Charles, IG ;
Fairweather, NF ;
Isaacs, NW .
NATURE, 1996, 381 (6577) :90-92
[16]   FIBRIL FORMATION BY PRIMATE, RODENT, AND DUTCH-HEMORRHAGIC ANALOGS OF ALZHEIMER AMYLOID BETA-PROTEIN [J].
FRASER, PE ;
NGUYEN, JT ;
INOUYE, H ;
SUREWICZ, WK ;
SELKOE, DJ ;
PODLISNY, MB ;
KIRSCHNER, DA .
BIOCHEMISTRY, 1992, 31 (44) :10716-10723
[17]   PH-DEPENDENT STRUCTURAL TRANSITIONS OF ALZHEIMER AMYLOID PEPTIDES [J].
FRASER, PE ;
NGUYEN, JT ;
SUREWICZ, WK ;
KIRSCHNER, DA .
BIOPHYSICAL JOURNAL, 1991, 60 (05) :1190-1201
[18]  
George AR, 1999, BIOPOLYMERS, V50, P733, DOI 10.1002/(SICI)1097-0282(199912)50:7<733::AID-BIP6>3.0.CO
[19]  
2-7
[20]   Watching amyloid fibrils grow by time-lapse atomic force microscopy [J].
Goldsbury, C ;
Kistler, J ;
Aebi, U ;
Arvinte, T ;
Cooper, GJS .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) :33-39