An algorithm for constructing polynomial systems whose solution space characterizes quantum circuits

被引:1
|
作者
Gerdt, Vladimir P. [1 ]
Severyanov, Vasily M. [1 ]
机构
[1] Joint Inst Nucl Res, Informat Technol Lab, Dubna 141980, Russia
来源
QUANTUM INFORMATICS 2005 | 2006年 / 6264卷
基金
俄罗斯基础研究基金会;
关键词
quantum computation; quantum circuit; hadamard gate; toffoli gate; sum-over-paths approach; polynomial equations; finite field; grobner basis; involutive algorithm; C#;
D O I
10.1117/12.683121
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
An algorithm and its first implementation in C# are presented for assembling arbitrary quantum circuits on the base of Hadamard and Toffoli gates and for constructing multivariate polynomial systems over the finite field Z(2) axising when applying the Feymnan's sum-over-paths approach to quantum circuits. The matrix elements determined by a circuit can be computed by counting the number of common roots in Z(2) for the polynomial system associated with the circuit. To determine the number of solutions in Z(2) for the output polynomial system, one can use the Grobner bases method and the relevant algorithms for computing Grobner bases.
引用
收藏
页数:10
相关论文
empty
未找到相关数据