Transformation elastodynamics and cloaking for flexural waves

被引:79
作者
Colquitt, D. J. [1 ,2 ]
Brun, M. [2 ,3 ]
Gei, M. [4 ]
Movchan, A. B. [2 ]
Movchan, N. V. [2 ]
Jones, I. S. [5 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
[3] Univ Cagliari, Dipartimento Ingn Meccan Chim & Mat, I-09123 Cagliari, Italy
[4] Univ Trento, Dept Civil Mech & Environm Engn, I-38123 Trento, Italy
[5] John Moores Univ, Sch Engn, Liverpool L3 3AF, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Cloaking; Transformation elastodynamics; Plates; Invisibility; Metamaterials; Waves; VONKARMAN EQUATIONS; MAXWELLS EQUATIONS; ACOUSTIC CLOAKING; ELASTICITY; FORM;
D O I
10.1016/j.jmps.2014.07.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper addresses an important issue of cloaking transformations for fourth-order partial differential equations representing flexural waves in thin elastic plates. It is shown that, in contrast with the Helmholtz equation, the general form of the partial differential equation is not invariant with respect to the cloaking transformation. The significant result of this paper is the analysis of the transformed equation and its interpretation in the framework of the linear theory of pre-stressed plates. The paper provides a formal framework for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm is proposed for designing a broadband square cloak for flexural waves, which employs a regularised push-out transformation. Illustrative numerical examples show high accuracy and efficiency of the proposed cloaking algorithm. In particular, a physical configuration involving a perturbation of an interference pattern generated by two coherent sources is presented. It is demonstrated that the perturbation produced by a cloaked defect is negligibly small even for such a delicate interference pattern. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 2010, Handbook of Mathematical Functions
[2]   Dynamics of a prestressed stiff layer on an elastic half space: filtering and band gap characteristics of periodic structural models derived from long-wave asymptotics [J].
Bigoni, D. ;
Gei, M. ;
Movchan, A. B. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (07) :2494-2520
[3]   A REMARK ON THE VONKARMAN EQUATIONS [J].
BLANCHARD, D ;
CIARLET, PG .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1983, 37 (01) :79-92
[4]   Achieving control of in-plane elastic waves [J].
Brun, M. ;
Guenneau, S. ;
Movchan, A. B. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)
[5]   Broadband polygonal invisibility cloak for visible light [J].
Chen, Hongsheng ;
Zheng, Bin .
SCIENTIFIC REPORTS, 2012, 2
[6]   Acoustic cloaking in three dimensions using acoustic metamaterials [J].
Chen, Huanyang ;
Chan, C. T. .
APPLIED PHYSICS LETTERS, 2007, 91 (18)
[7]   Acoustic cloaking and transformation acoustics [J].
Chen, Huanyang ;
Chan, C. T. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2010, 43 (11)
[8]  
CIARLET PG, 1980, ARCH RATION MECH AN, V73, P349, DOI 10.1007/BF00247674
[9]   Making waves round a structured cloak: lattices, negative refraction and fringes [J].
Colquitt, D. J. ;
Jones, I. S. ;
Movchan, N. V. ;
Movchan, A. B. ;
Brun, M. ;
McPhedran, R. C. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2157)
[10]   One path to acoustic cloaking [J].
Cummer, Steven A. ;
Schurig, David .
NEW JOURNAL OF PHYSICS, 2007, 9