Collisions of Particles in Locally AdS Spacetimes II Moduli of Globally Hyperbolic Spaces

被引:5
作者
Barbot, Thierry [1 ]
Bonsante, Francesco [2 ]
Schlenker, Jean-Marc [3 ]
机构
[1] Univ Avignon & Pays Vaucluse, Lab Anal Non Lineaire & Geometrie, F-84018 Avignon, France
[2] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[3] Univ Luxembourg, Math Res Unit, L-1359 Luxembourg, Luxembourg
关键词
POINT PARTICLES; CONE-MANIFOLDS; RIGIDITY;
D O I
10.1007/s00220-014-2020-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate globally hyperbolic 3-dimensional AdS manifolds containing "particles", i.e., cone singularities of angles less than 2 pi along a time-like graph I". To each such space (equipped with a time-like vector field satisfying some additional properties) we associate a graph and a finite family of pairs of hyperbolic surfaces with cone singularities. We show that this data is sufficient to recover the space locally (i.e., in the neighborhood of a fixed metric). This is a partial extension of a result of Mess for non-singular globally hyperbolic AdS manifolds.
引用
收藏
页码:691 / 735
页数:45
相关论文
共 20 条
[1]   Notes on a paper of Mess [J].
Andersson, Lars ;
Barbot, Thierry ;
Benedetti, Riccardo ;
Bonsante, Francesco ;
Goldman, William M. ;
Labourie, Francois ;
Scannell, Kevin P. ;
Schlenker, Jean-Marc .
GEOMETRIAE DEDICATA, 2007, 126 (01) :47-70
[2]   Collisions of Particles in Locally AdS Spacetimes I. Local Description and Global Examples [J].
Barbot, Thierry ;
Bonsante, Francesco ;
Schlenker, Jean-Marc .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (01) :147-200
[3]  
Bers L., 1960, Bull. Amer. Math. Soc., V66, P94, DOI 10.1090/S0002-9904-1960-10413-2
[4]   Geometrization of 3-dimensional orbifolds [J].
Boileau, M ;
Leeb, B ;
Porti, J .
ANNALS OF MATHEMATICS, 2005, 162 (01) :195-290
[5]   Ads Manifolds With Particles and Earthquakes on Singular Surfaces [J].
Bonsante, Francesco ;
Schlenker, Jean-Marc .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (01) :41-82
[6]  
Brock J, 2003, PUBL MATH, P145
[7]  
Canary R.D., 1986, LONDON MATH SOC LECT, V111, P3
[8]  
Cooper D., 2000, MSJ MEMOIRS, V5
[9]  
FENG L, 1993, INVENT MATH, V111, P541
[10]   TOPOLOGICAL COMPONENTS OF SPACES OF REPRESENTATIONS [J].
GOLDMAN, WM .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :557-607