Regular lattice polytopes and root systems

被引:1
|
作者
Montagard, Pierre-Louis [1 ]
Ressayre, Nicolas [1 ]
机构
[1] Univ Montpellier 2, Inst Mathemat & Modelisat Montpellier, CNRS, UMR 5149, F-34095 Montpellier, France
关键词
D O I
10.1112/blms/bdn120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider Lambda, a lattice in a real finite-dimensional vector space. Here we are interested in lattice polytopes, that is, convex polytopes with vertices in Lambda. Consider the group G of the affine real transformations that map the lattice onto itself. Replacing the group of Euclidean motions by the group G one can define the notion of regular lattice polytopes. More precisely, a lattice polytope is said to be regular if the subgroup of G which preserves the polytope acts transitively on the set of its complete flags. In this paper, we associate to each regular lattice polytope a root system. This association allows us to give a new proof of the classification of regular lattice polytopes recently obtained by Karpenkov.
引用
收藏
页码:227 / 241
页数:15
相关论文
共 50 条
  • [21] Realizations of regular polytopes, III
    McMullen, Peter
    AEQUATIONES MATHEMATICAE, 2011, 82 (1-2) : 35 - 63
  • [22] Inscribing a regular octahedron into polytopes
    Akopyan, Arseniy
    Karasev, Roman
    DISCRETE MATHEMATICS, 2013, 313 (01) : 122 - 128
  • [23] Regular polytopes of full rank
    McMullen, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 2004, 32 (01) : 1 - 35
  • [24] Realizations of regular polytopes, II
    P. McMullen
    B. Monson
    aequationes mathematicae, 2003, 65 (1) : 102 - 112
  • [25] Regular Polytopes in Ordinary Space
    P. McMullen
    E. Schulte
    Discrete & Computational Geometry, 1997, 17 : 449 - 478
  • [26] AFFINELY AND PROJECTIVELY REGULAR POLYTOPES
    MCMULLEN, P
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1968, 43 (172P): : 755 - &
  • [27] Realizations of regular polytopes, IV
    McMullen, Peter
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 1 - 30
  • [28] Random projections of regular polytopes
    Boroczky, K
    Henk, M
    ARCHIV DER MATHEMATIK, 1999, 73 (06) : 465 - 473
  • [29] Volume Computation for Polytopes and Partition Functions for Classical Root Systems
    M. Welleda Baldoni
    Matthias Beck
    Charles Cochet
    Michele Vergne
    Discrete & Computational Geometry, 2006, 35 : 551 - 595
  • [30] Valuations on Lattice Polytopes
    Boroczky, Karoly J.
    Ludwig, Monika
    TENSOR VALUATIONS AND THEIR APPLICATIONS IN STOCHASTIC GEOMETRY AND IMAGING, 2017, 2177 : 213 - 234