Phase diagram of two-dimensional hard ellipses

被引:50
作者
Bautista-Carbajal, Gustavo [1 ,2 ]
Odriozola, Gerardo [3 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Fis, Mexico City 09340, DF, Mexico
[2] Univ Autonoma Ciudad Mexico, Acad Matemat, Mexico City 07160, DF, Mexico
[3] Inst Mexicano Petr, Programa Ingn Mol, Mexico City 07730, DF, Mexico
关键词
MONTE-CARLO-SIMULATION; TRANSITIONS; PARTICLES; NANOCRYSTALS; BEHAVIOR; FLUIDS; ORDER;
D O I
10.1063/1.4878411
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the phase diagram of two-dimensional hard ellipses as obtained from replica exchange Monte Carlo simulations. The replica exchange is implemented by expanding the isobaric ensemble in pressure. The phase diagram shows four regions: isotropic, nematic, plastic, and solid (letting aside the hexatic phase at the isotropic-plastic two-step transition [E. P. Bernard and W. Krauth, Phys. Rev. Lett. 107, 155704 (2011)]). At low anisotropies, the isotropic fluid turns into a plastic phase which in turn yields a solid for increasing pressure (area fraction). Intermediate anisotropies lead to a single first order transition (isotropic-solid). Finally, large anisotropies yield an isotropic-nematic transition at low pressures and a high-pressure nematic-solid transition. We obtain continuous isotropic-nematic transitions. For the transitions involving quasi-long-range positional ordering, i.e., isotropic-plastic, isotropic-solid, and nematic-solid, we observe bimodal probability density functions. This supports first order transition scenarios. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 47 条
[11]   Tetratic order in the phase behavior of a hard-rectangle system [J].
Donev, A ;
Burton, J ;
Stillinger, FH ;
Torquato, S .
PHYSICAL REVIEW B, 2006, 73 (05)
[12]   Unusually dense crystal packings of ellipsoids [J].
Donev, A ;
Stillinger, FH ;
Chaikin, PM ;
Torquato, S .
PHYSICAL REVIEW LETTERS, 2004, 92 (25) :255506-1
[13]   Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details [J].
Donev, A ;
Torquato, S ;
Stillinger, FH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) :737-764
[14]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198
[15]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[16]   Two-dimensional system of hard ellipses: A molecular dynamics study [J].
Foulaadvand, M. Ebrahim ;
Yarifard, Mohsen .
PHYSICAL REVIEW E, 2013, 88 (05)
[17]   EVIDENCE FOR ALGEBRAIC ORIENTATIONAL ORDER IN A 2-DIMENSIONAL HARD-CORE NEMATIC [J].
FRENKEL, D ;
EPPENGA, R .
PHYSICAL REVIEW A, 1985, 31 (03) :1776-1787
[18]   Hard ellipsoids: Analytically approaching the exact overlap distance [J].
Guevara-Rodriguez, F. de J. ;
Odriozola, G. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (08)
[19]   THEORY OF 2-DIMENSIONAL MELTING [J].
HALPERIN, BI ;
NELSON, DR .
PHYSICAL REVIEW LETTERS, 1978, 41 (02) :121-124
[20]   Exchange Monte Carlo method and application to spin glass simulations [J].
Hukushima, K ;
Nemoto, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (06) :1604-1608