GENERALIZED STARK FORMULAE OVER FUNCTION FIELDS

被引:0
作者
Tan, Ki-Seng [1 ]
机构
[1] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
关键词
Stickelberger element; special values of L-functions; Stark Conjecture; conjecture of Gross; class numbers; local Leopoldt conjecture; Rubin's conjecture; conjecture of Rubin and Burns; regulators; ABELIAN L-FUNCTIONS; CLASS NUMBER FORMULA; GLOBAL FUNCTION-FIELDS; STICKELBERGER ELEMENTS; CONJECTURE; DERIVATIVES; EXTENSIONS; GROSS; S=0; VALUES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish formulae of Stark type for the Stickelberger elements in the function field setting. Our result generalizes work of Hayes and a conjecture of Gross. It is used to deduce a p-adic version of the Rubin-Stark Conjecture and the Burns Conjecture.
引用
收藏
页码:2277 / 2304
页数:28
相关论文
共 34 条
[1]  
AOKI N, 2004, J THEORIE NOMBRES BO, V16, P457
[2]  
Aoki N., 1991, COMMENT MATH U ST PA, V40, P101
[3]   On the refined class number formula of Gross [J].
Burns, D ;
Lee, JG .
JOURNAL OF NUMBER THEORY, 2004, 107 (02) :282-286
[4]  
BURNS D, 2002, RELATIONS DERIVATIVE
[5]  
BURNS D, 2004, DOCUMENTA MATH, V9, P357
[6]   Congruences between derivatives of abelian L-functions at s=0 [J].
Burns, David .
INVENTIONES MATHEMATICAE, 2007, 169 (03) :451-499
[7]   THAINES METHOD FOR CIRCULAR UNITS AND A CONJECTURE OF GROSS [J].
DARMON, H .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (02) :302-317
[8]  
GROSS B, NOTE REFINED S UNPUB
[9]  
Gross B. H., 1988, J. Fac. Sci. Univ. Tokyo Sect. IA Math., V35, P177
[10]   THE REFINED P-ADIC ABELIAN STARK CONJECTURE IN FUNCTION-FIELDS [J].
HAYES, DR .
INVENTIONES MATHEMATICAE, 1988, 94 (03) :505-527