Uniform yolk-shell iron sulfide-carbon nanospheres for superior sodium-iron sulfide batteries

被引:412
作者
Wang, Yun-Xiao [1 ,2 ]
Yang, Jianping [1 ,2 ,3 ]
Chou, Shu-Lei [1 ]
Liu, Hua Kun [1 ]
Zhang, Wei-xian [3 ]
Zhao, Dongyuan [2 ]
Dou, Shi Xue [1 ]
机构
[1] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, North Wollongong, NSW 2500, Australia
[2] Fudan Univ, IChEM, Dept Chem, Lab Adv Mat,Shanghai Key Lab Mol Catalysis, Shanghai 200433, Peoples R China
[3] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resources Reuse, Shanghai 200092, Peoples R China
基金
澳大利亚研究理事会;
关键词
REDUCED GRAPHENE OXIDE; ELECTROCHEMICAL PROPERTIES; ION BATTERIES; HIGH-CAPACITY; LITHIUM BATTERIES; CATHODE MATERIAL; LOW-COST; ANODE; PERFORMANCE; COMPOSITE;
D O I
10.1038/ncomms9689
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sodium-metal sulfide battery holds great promise for sustainable and cost-effective applications. Nevertheless, achieving high capacity and cycling stability remains a great challenge. Here, uniform yolk-shell iron sulfide-carbon nanospheres have been synthesized as cathode materials for the emerging sodium sulfide battery to achieve remarkable capacity of similar to 545 mA h g(-1) over 100 cycles at 0.2 C (100mAg(-1)), delivering ultrahigh energy density of similar to 438 Wh kg(-1). The proven conversion reaction between sodium and iron sulfide results in high capacity but severe volume changes. Nanostructural design, including of nanosized iron sulfide yolks (similar to 170 nm) with porous carbon shells (similar to 30 nm) and extra void space (similar to 20 nm) in between, has been used to achieve excellent cycling performance without sacrificing capacity. This sustainable sodium-iron sulfide battery is a promising candidate for stationary energy storage. Furthermore, this spatially confined sulfuration strategy offers a general method for other yolk-shell metal sulfide-carbon composites.
引用
收藏
页数:9
相关论文
共 42 条
[1]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[2]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[3]   Carbon dioxide assist for non-aqueous sodium-oxygen batteries [J].
Das, Shyamal K. ;
Xu, Shaomao ;
Archer, Lynden A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 :59-62
[4]   Enhanced electrochemical performance of FeS coated by Ag as anode for lithium-ion batteries [J].
Dong, Chenchu ;
Zheng, Xiaodong ;
Huang, Bing ;
Lu, Mi .
APPLIED SURFACE SCIENCE, 2013, 265 :114-119
[5]   Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance [J].
Fei, Ling ;
Lin, Qianglu ;
Yuan, Bin ;
Chen, Gen ;
Xie, Pu ;
Li, Yuling ;
Xu, Yun ;
Deng, Shuguang ;
Smirnov, Sergei ;
Luo, Hongmei .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) :5330-5335
[6]   A STUDY OF PYRITE-BASED CATHODES FOR AMBIENT-TEMPERATURE LITHIUM BATTERIES BY INSITU FE-57 MOSSBAUER-SPECTROSCOPY [J].
FONG, R ;
JONES, CHW ;
DAHN, JR .
JOURNAL OF POWER SOURCES, 1989, 26 (3-4) :333-339
[7]   Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries [J].
Golodnitsky, D ;
Peled, E .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :335-350
[8]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[9]  
Hartmann P, 2013, NAT MATER, V12, P228, DOI [10.1038/nmat3486, 10.1038/NMAT3486]
[10]   Tailoring Porosity in Carbon Nanospheres for Lithium-Sulfur Battery Cathodes [J].
He, Guang ;
Evers, Scott ;
Liang, Xiao ;
Cuisinier, Marine ;
Garsuch, Arnd ;
Nazar, Linda F. .
ACS NANO, 2013, 7 (12) :10920-10930