Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002

被引:275
作者
Gallis, B
Corthals, GL
Goodlett, DR
Ueba, H
Kim, F
Presnell, SR
Figeys, D
Harrison, DG
Berk, BC
Aebersold, R
Corson, MA
机构
[1] Univ Washington, Div Cardiol, Dept Med, Seattle, WA 98195 USA
[2] Univ Washington, Dept Mol Biotechnol, Seattle, WA 98195 USA
[3] Emory Univ, Sch Med, Dept Med, Atlanta, GA 30322 USA
[4] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
关键词
D O I
10.1074/jbc.274.42.30101
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Endothelial cells release nitric oxide (NO) acutely in response to increased laminar fluid shear stress, and the increase is correlated with enhanced phosphorylation of endothelial nitric-oxide synthase (eNOS). Phosphoamino acid analysis of eNOS from bovine aortic endothelial cells labeled with [P-32]orthophosphate demonstrated that only phosphoserine was present in eNOS under both static and flow conditions. Fluid shear stress induced phosphate incorporation into two specific eNOS tryptic peptides as early as 30 s after initiation of flow. The flow-induced tryptic phosphopeptides were enriched, separated by capillary electrophoresis with intermittent voltage drops, also known as 'peak parking," and analyzed by collision-induced dissociation in a tandem mass spectrometer. Two phosphopeptide sequences determined by tandem mass spectrometry, TQpSFSLQER and KLQTRPpSPGPPPAEQLLSQAR, were confirmed as the two flow-dependent phosphopeptides by co-migration with synthetic phosphopeptides. Because the sequence (RIR)TQpSFSLQER contains a consensus substrate site for protein kinase B (PKB or Akt), we demonstrated that LY294002, an inhibitor of the upstream activator of PKB, phosphatidylinositol 3-kinase, inhibited flow-induced eNOS phosphorylation by 97% and NO production by 68%. Finally, PKB phosphorylated eNOS in vitro at the same site phosphorylated in the cell and increased eNOS enzymatic activity by 15-20-fold.
引用
收藏
页码:30101 / 30108
页数:8
相关论文
共 60 条
  • [1] ACRES RB, 1986, J BIOL CHEM, V261, P6210
  • [2] EVALUATION OF 2-DIMENSIONAL PHOSPHOPEPTIDE MAPS BY ELECTROSPRAY-IONIZATION MASS-SPECTROMETRY OF RECOVERED PEPTIDES
    AFFOLTER, M
    WATTS, JD
    KREBS, DL
    AEBERSOLD, R
    [J]. ANALYTICAL BIOCHEMISTRY, 1994, 223 (01) : 74 - 81
  • [3] Mechanism of activation and function of protein kinase B
    Alessi, DR
    Cohen, P
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1998, 8 (01) : 55 - 62
  • [4] AMP-activated protein kinase phosphorylation of endothelial NO synthase
    Chen, ZP
    Mitchelhill, KI
    Michell, BJ
    Stapleton, D
    Rodriguez-Crespo, I
    Witters, LA
    Power, DA
    de Montellano, PRO
    Kemp, BE
    [J]. FEBS LETTERS, 1999, 443 (03) : 285 - 289
  • [5] Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress
    Corson, MA
    James, NL
    Latta, SE
    Nerem, RM
    Berk, BC
    Harrison, DG
    [J]. CIRCULATION RESEARCH, 1996, 79 (05) : 984 - 991
  • [6] Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins
    Couet, J
    Li, SW
    Okamoto, T
    Ikezu, T
    Lisanti, MP
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) : 6525 - 6533
  • [7] Rapid protein identification using a microscale electrospray LC/MS system on an ion trap mass spectrometer
    Davis, MT
    Lee, TD
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1998, 9 (03) : 194 - 201
  • [8] Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation
    Dimmeler, S
    Fleming, I
    Fisslthaler, B
    Hermann, C
    Busse, R
    Zeiher, AM
    [J]. NATURE, 1999, 399 (6736) : 601 - 605
  • [9] A SYNTHETIC INHIBITOR OF THE MITOGEN-ACTIVATED PROTEIN-KINASE CASCADE
    DUDLEY, DT
    PANG, L
    DECKER, SJ
    BRIDGES, AJ
    SALTIEL, AR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) : 7686 - 7689
  • [10] Identification of a novel inhibitor of mitogen-activated protein kinase kinase
    Favata, MF
    Horiuchi, KY
    Manos, EJ
    Daulerio, AJ
    Stradley, DA
    Feeser, WS
    Van Dyk, DE
    Pitts, WJ
    Earl, RA
    Hobbs, F
    Copeland, RA
    Magolda, RL
    Scherle, PA
    Trzaskos, JM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) : 18623 - 18632