Quaternion quantum neurocomputing

被引:4
作者
Bayro-Corrochano, Eduardo [1 ]
Solis-Gamboa, Samuel [1 ]
机构
[1] CINVESTAV, Dept Elect Engn & Comp Sci, Campus Guadalajara,1145 Bosque Ave,El Bajio, Zapopan 45019, Mexico
关键词
Quantum computing; neural networks; geometric algebra; quaternion algebra; quaternion neural networks; quaternion quantum neural networks; OPERATORS;
D O I
10.1142/S0219691320400019
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Since the introduction of quaternion by Hamilton in 1843, quaternions have been used in a lot of applications. One of the most interesting qualities is that we can use quaternions to carry out rotations and operate on other quaternions; this characteristic of the quaternions inspired us to investigate how the quantum states and quantum operator work in the field of quaternions and how we can use it to construct a quantum neural network. This new type of quantum neural network (QNN) is developed in the quaternion algebra framework that is isomorphic to the rotor algebra G(3)(+) of the geometric algebra and is based on the so-called qubit neuron model. The quaternion quantum neural network (QQNN) is tested and shows robust performance.
引用
收藏
页数:15
相关论文
共 20 条
[1]  
Altaisky M., 2010, ARXIVQUANT PH0107012
[2]  
Bell JS., 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, 10.1103/PhysicsPhysiqueFizika.1.195]
[3]  
Cafaro C., 2010, ARXIV10062071V1 MATH
[4]  
Chappell J. M., 2011, THESIS U ADELAIDE AU
[5]   STATES AND OPERATORS IN THE SPACETIME ALGEBRA [J].
DORAN, C ;
LASENBY, A ;
GULL, S .
FOUNDATIONS OF PHYSICS, 1993, 23 (09) :1239-1264
[6]  
Doran C. J. L., 1996, CLIFFORD GEOMETRIC A, V95, P271
[7]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[8]  
Havel T.F., 2001, CONTEMP MATH
[9]   OBSERVABLES, OPERATORS, AND COMPLEX NUMBERS IN DIRAC THEORY [J].
HESTENES, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :556-572
[10]  
Hestenes D., 1966, Space-Time Algebra, DOI 10.1007/978-3-319-18413-5