Chemical and structural instabilities of lithium ion battery cathodes

被引:50
|
作者
Manthiram, A. [1 ]
Choi, J. [1 ]
机构
[1] Univ Texas, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
lithium ion batteries; layered oxides; chemical stability; crystal chemistry; rate capability;
D O I
10.1016/j.jpowsour.2006.04.028
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chemical and structural stabilities of various layered Li1-xNi1-y-zMnyCozO2 cathodes are compared by characterizing the samples obtained by chemically extracting lithium from the parent Li1-xNi1-y-zMnyCozO2 with NO2BF4 in an acetonitrile medium. The nickel- and manganese-rich compositions such as Li1-xNi1/3Mn1/3Co1/3O2 and Li1-xNi0.5Mn0.5O2 exhibit better chemical stability than the LiCoO2 cathode. While the chemically delithiated Li1-xCoO2 tends to form a P3 type phase for (1 - x) < 0.5, Li1-xNi0.5Mn0.5O2 maintains the original O3 type phase for the entire 0 <= (1 - x)<= 1 and Li1-xNi1/3Mn1/3Co1/3O2 forms an O1 type phase for (1 - x)< 0.23. The variations in the type of phases formed are explained on the basis of the differences in the chemical lithium extraction rate caused by the differences in the degree of cation disorder and electrostatic repulsions. Additionally, the observed rate capability of the Li1-xNi1-y-xMnyCozO2 cathodes bears a clear relationship to cation disorder and lithium extraction rate. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [21] Olivine-Type Nanosheets for Lithium Ion Battery Cathodes
    Rui, Xianhong
    Zhao, Xiaoxu
    Lu, Ziyang
    Tan, Huiteng
    Sim, Daohao
    Hng, Huey Hoon
    Yazami, Rachid
    Lim, Tuti Mariana
    Yan, Qingyu
    ACS NANO, 2013, 7 (06) : 5637 - 5646
  • [22] Revisiting metal fluorides as lithium-ion battery cathodes
    Hua, Xiao
    Eggeman, Alexander S.
    Castillo-Martinez, Elizabeth
    Robert, Rosa
    Geddes, Harry S.
    Lu, Ziheng
    Pickard, Chris J.
    Meng, Wei
    Wiaderek, Kamila M.
    Pereira, Nathalie
    Amatucci, Glenn G.
    Midgley, Paul A.
    Chapman, Karena W.
    Steiner, Ullrich
    Goodwin, Andrew L.
    Grey, Clare P.
    NATURE MATERIALS, 2021, 20 (06) : 841 - +
  • [23] Rechargeable lithium-ion battery cathodes: In-situ XAS
    McBreen, J
    Balasubramanian, M
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2002, 54 (03): : 25 - 28
  • [24] Reduced Graphene Oxide/LiI Composite Lithium Ion Battery Cathodes
    Kim, Sanghyeon
    Kim, Sung-Kon
    Sun, Pengcheng
    Oh, Nuri
    Braun, Paul V.
    NANO LETTERS, 2017, 17 (11) : 6893 - 6899
  • [25] Impact of CB dispersion on the performance of lithium-ion battery cathodes
    Weber, Marcel
    Gerstenberg, Jessica
    Kwade, Arno
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [26] Computational Electrochemistry. Voltages of Lithium-Ion Battery Cathodes
    Wang, Bo
    Luo, Sijie
    Truhlar, Donald G.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (08): : 1437 - 1439
  • [27] Rechargeable lithium-ion battery cathodes: In-situ XAS
    J. McBreen
    M. Balasubramanian
    JOM, 2002, 54 : 25 - 28
  • [28] Nanoscale visualization of redox activity at lithium-ion battery cathodes
    Yasufumi Takahashi
    Akichika Kumatani
    Hirokazu Munakata
    Hirotaka Inomata
    Komachi Ito
    Kosuke Ino
    Hitoshi Shiku
    Patrick R. Unwin
    Yuri E. Korchev
    Kiyoshi Kanamura
    Tomokazu Matsue
    Nature Communications, 5
  • [29] Nanoscale visualization of redox activity at lithium-ion battery cathodes
    Takahashi, Yasufumi
    Kumatani, Akichika
    Munakata, Hirokazu
    Inomata, Hirotaka
    Ito, Komachi
    Ino, Kosuke
    Shiku, Hitoshi
    Unwin, Patrick R.
    Korchev, Yuri E.
    Kanamura, Kiyoshi
    Matsue, Tomokazu
    NATURE COMMUNICATIONS, 2014, 5
  • [30] Electrolyte Additives for Interfacial Modification of Cathodes in Lithium-Ion Battery
    Jiang, Zhimin
    Wang, Li
    Shen, Min
    Chen, Huichuang
    Ma, Guoqiang
    He, Xiangming
    PROGRESS IN CHEMISTRY, 2019, 31 (05) : 699 - 713