Varieties of nilpotent elements for simple Lie algebras I: Good primes

被引:8
作者
Benson, DJ [1 ]
Bergonio, P [1 ]
Boe, BD [1 ]
Chastkofsky, L [1 ]
Cooper, B [1 ]
Guy, GM [1 ]
Hyun, JJ [1 ]
Jungster, J [1 ]
Matthews, G [1 ]
Mazza, N [1 ]
Nakano, DK [1 ]
Platt, K [1 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.jalgebra.2004.05.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple algebraic group over k = C, or F-p where p is good. Set g = Lie G. Given r is an element of N and a faithful (restricted) representation rho: g --> gl(V), one can define a variety of nilpotent elements N-r,(rho)(g) = {x is an element of g: rho(x)(r) = 0}. In this paper we determine this variety when rho is an irreducible representation of minimal dimension or the adjoint representation. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:719 / 737
页数:19
相关论文
共 50 条
  • [41] Free nilpotent and nilpotent quadratic Lie algebras
    Benito, P.
    de-la-Concepcion, D.
    Laliena, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 296 - 326
  • [42] INNER IDEALS AND AD-NILPOTENT ELEMENTS OF LIE-ALGEBRAS
    BENKART, G
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 232 (SEP) : 61 - 81
  • [43] INNER IDEALS AND AD-NILPOTENT ELEMENTS OF LIE-ALGEBRAS
    BENKART, G
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A96 - A97
  • [44] REGULAR CARTAN SUBALGEBRAS AND NILPOTENT ELEMENTS IN RESTRICTED LIE-ALGEBRAS
    PREMET, AA
    MATHEMATICS OF THE USSR-SBORNIK, 1990, 66 (02): : 555 - 570
  • [45] CHARACTERISTICALLY NILPOTENT LIE ALGEBRAS
    LEGER, G
    TOGO, S
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) : 623 - 628
  • [46] On nilpotent extensions of Lie algebras
    Yankosky, B
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (04): : 719 - 724
  • [47] Representations of nilpotent Lie algebras
    Farnsteiner, R
    ARCHIV DER MATHEMATIK, 1999, 72 (01) : 28 - 39
  • [48] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [49] CONTACT NILPOTENT LIE ALGEBRAS
    Alvarez, M. A.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1467 - 1474
  • [50] A class of nilpotent Lie algebras
    Cabezas, JM
    Camacho, LM
    Gómez, JR
    Navarro, RM
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (09) : 4489 - 4499