Relativistic hydrodynamic fluctuations

被引:69
作者
An, Xin [1 ]
Basar, Gokce [1 ,2 ]
Stephanov, Mikhail [1 ]
Yee, Ho-Ung [1 ]
机构
[1] Univ Illinois, Dept Phys, Chicago, IL 60607 USA
[2] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA
关键词
D O I
10.1103/PhysRevC.100.024910
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We present a general systematic formalism for describing dynamics of fluctuations in an arbitrary relativistic hydrodynamic flow, including their feedback (known as long-time hydrodynamic tails). The fluctuations are described by two-point equal-time correlation functions. We introduce a definition of equal time in a situation where the local rest frame is determined by the local flow velocity and a method of taking derivatives and Wigner transforms of such equal-time correlation functions, which we call confluent. We find that not only do the equations for confluent Wigner functions resemble kinetic equations but also the kinetic equation for phonons propagating on an arbitrary background nontrivially matches the equations for Wigner functions, including relativistic inertial and Coriolis forces due to acceleration and vorticity of the flow. We also describe the procedure of renormalization of short-distance singularities which eliminates cutoff dependence, allowing efficient numerical implementation of these equations.
引用
收藏
页数:21
相关论文
共 28 条
[1]   Global Λ hyperon polarization in nuclear collisions [J].
Adamczyk, L. ;
Adkins, J. K. ;
Agakishiev, G. ;
Aggarwal, M. M. ;
Ahammed, Z. ;
Ajitanand, N. N. ;
Alekseev, I. ;
Anderson, D. M. ;
Aoyama, R. ;
Aparin, A. ;
Arkhipkin, D. ;
Aschenauer, E. C. ;
Ashraf, M. U. ;
Attri, A. ;
Averichev, G. S. ;
Bai, X. ;
Bairathi, V. ;
Behera, A. ;
Bellwied, R. ;
Bhasin, A. ;
Bhati, A. K. ;
Bhattarai, P. ;
Bielcik, J. ;
Bielcikova, J. ;
Bland, L. C. ;
Bordyuzhin, I. G. ;
Bouchet, J. ;
Brandenburg, J. D. ;
Brandin, A. V. ;
Brown, D. ;
Bunzarov, I. ;
Butterworth, J. ;
Caines, H. ;
Sanchez, M. Calderon De la Barca ;
Campbell, J. M. ;
Cebra, D. ;
Chakaberia, I. ;
Chaloupka, P. ;
Chang, Z. ;
Chankova-Bunzarova, N. ;
Chatterjee, A. ;
Chattopadhyay, S. ;
Chen, X. ;
Chen, J. H. ;
Chen, X. ;
Cheng, J. ;
Cherney, M. ;
Christie, W. ;
Contin, G. ;
Crawford, H. J. .
NATURE, 2017, 548 (7665) :62-+
[2]   Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory [J].
Akamatsu, Yukinao ;
Mazeliauskas, Aleksas ;
Teaney, Derek .
PHYSICAL REVIEW C, 2018, 97 (02)
[3]   Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion [J].
Akamatsu, Yukinao ;
Mazeliauskas, Aleksas ;
Teaney, Derek .
PHYSICAL REVIEW C, 2017, 95 (01)
[4]  
Andreev A., 1970, ZH EKSP TEOR FIZ, V59, P1819
[5]  
ANDREEV AF, 1978, ZH EKSP TEOR FIZ+, V75, P1132
[6]  
[Anonymous], ARXIV10072613NUCLEX
[7]  
[Anonymous], 2017, J HIGH ENERGY PHYS, DOI DOI 10.3390/NU9101103
[8]  
BROTMAN Y, 2013, COURSE THEORETICAL P, V9
[9]   RELATIVISTIC THEORIES OF DISSIPATIVE FLUIDS [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (08) :4226-4241
[10]   Effective action for relativistic hydrodynamics: fluctuations, dissipation, and entropy inflow [J].
Haehl, Felix M. ;
Loganayagam, R. ;
Rangamani, Mukund .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (10)