Asymptotic improvement of the Gilbert-Varshamov bound on the size of binary codes

被引:51
|
作者
Jiang, T [1 ]
Vardy, A
机构
[1] Miami Univ, Dept Math & Stat, Oxford, OH 45056 USA
[2] Univ Calif San Diego, Dept Elect & Comp Engn, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Ajtai-Komlos-Szemeredi bound; asymptotic constructions; binary codes; constant-weight codes; Gilbert-Varshamov bound; locally sparse graphs; nonlinear codes;
D O I
10.1109/TIT.2004.831751
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given positive integers n and d, let A(2) (n, d) denote the maximum size of a binary code of length n and minimum distance d. The well-known Gilbert-Varshamov bound asserts that A(2) (n, d) greater than or equal to 2(n)/V (n, d - 1), where V (n, d) = Sigma(i=0)(d) (7) is the volume of a Hamming sphere of radius d. We show that, in fact, there exists a positive constant c such that A(2) (n, d) greater than or equal to c 2(n) / V(n, d-1) log(2) V(n, d-1) whenever d/n less than or equal to, 0.499. The result follows by recasting the Gilbert-Varshamov bound into a graph-theoretic framework and using the fact that the corresponding graph is locally sparse. Generalizations and extensions of this result are briefly discussed.
引用
收藏
页码:1655 / 1664
页数:10
相关论文
共 42 条
  • [31] Two Gilbert–Varshamov-type existential bounds for asymmetric quantum error-correcting codes
    Ryutaroh Matsumoto
    Quantum Information Processing, 2017, 16
  • [32] Two Gilbert-Varshamov-type existential bounds for asymmetric quantum error-correcting codes
    Matsumoto, Ryutaroh
    QUANTUM INFORMATION PROCESSING, 2017, 16 (12)
  • [33] Binary Subblock Energy-Constrained Codes: Bounds on Code Size and Asymptotic Rate
    Tandon, Anshoo
    Kiah, Han Mao
    Motani, Mehul
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1480 - 1484
  • [34] An upper bound for binary constant weight codes
    Fu, FW
    Shen, SY
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 94 (02) : 197 - 203
  • [35] On the general excess bound for binary codes with covering radius one
    Haas, Wolfgang
    DISCRETE MATHEMATICS, 2013, 313 (23) : 2751 - 2762
  • [36] New upper bound for binary codes with minimum distance four
    Kim, JK
    Hahn, SG
    DISCRETE MATHEMATICS, 1998, 187 (1-3) : 291 - 295
  • [37] Bounds on the Size and Asymptotic Rate of Subblock-Constrained Codes
    Tandon, Anshoo
    Kiah, Han Mao
    Motani, Mehul
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6604 - 6619
  • [38] The characterization of binary constant weight codes meeting the bound of Fu and Shen
    Fu, Fang-Wei
    Xia, Shu-Tho
    DESIGNS CODES AND CRYPTOGRAPHY, 2007, 43 (01) : 9 - 20
  • [39] The characterization of binary constant weight codes meeting the bound of Fu and Shen
    Fang-Wei Fu
    Shu-Tao Xia
    Designs, Codes and Cryptography, 2007, 43 : 9 - 20
  • [40] New Bounds on the Size of Binary Codes With Large Minimum Distance
    Pang J.C.-J.
    Mahdavifar H.
    Sandeep Pradhan S.
    IEEE Journal on Selected Areas in Information Theory, 2023, 4 : 219 - 231