Profile Evolution of High Aspect Ratio Silicon Carbide Trenches by Inductive Coupled Plasma Etching

被引:53
|
作者
Dowling, Karen M. [1 ]
Ransom, Elliot H. [2 ]
Senesky, Debbie G. [2 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Etch; evolution; high aspect ratio; microtrench; plasma; silicon carbide; and trench; FABRICATION; HOLES; RATES; MEMS;
D O I
10.1109/JMEMS.2016.2621131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Micromachining silicon carbide (SiC) is challenging due to its durable nature. However, plasma and laser etch processes have been utilized to realize deep and high aspect ratio (HAR) features in SiC substrates and films. HAR topologies in SiC can improve SiC-based MEMS transducers (reduced electrostatic gaps) and enable embedded substrate cooling features. Our process used inductive coupled plasma (ICP) etching with sulfur hexafluoride (SF6) and oxygen (O-2) and an electroplated Ni hard mask. We examine the formation of SiC trenches by observing aspect-ratio-dependent and timedependent etch rate and topography in 4H-SiC substrates. In addition, we studied the effect of ICP etch parameters, such as RF bias power (25-100 W), pressure (5-15 mTorr), and O-2 flow fraction (10%-40%), on etch rate and topography. Our process resulted in SiC etch rates between 0.27 and 0.75 mu m/min with aspect-ratio-dependent and depth-dependent characteristics. We observed trench profiles that evolve from square (low AR) to "W" (medium AR) and converged "V" (HAR) shapes. Finally, we report the highest aspect ratio (18.5:1) trench achieved to date in 4H-SiC via ICP etching, which supports many SiC- based MEMS applications.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 50 条
  • [1] Plasma etching of silicon carbide trenches with high aspect ratio and rounded corners
    Tan, Xiaoyu
    Lin, Guoming
    Ji, Ankuan
    Lin, Yuanwei
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2025, 188
  • [2] Plasma Etching of Deep High-Aspect Ratio Features Into Silicon Carbide
    Ozgur, Mehmet
    Huff, Michael
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (02) : 456 - 463
  • [3] Profile control in high aspect ratio contact hole etching by a capacitively coupled plasma source
    Yen, TF
    Chang, KJ
    Chiu, KF
    MICROELECTRONIC ENGINEERING, 2005, 82 (02) : 129 - 135
  • [4] HBr based inductively coupled plasma etching of high aspect ratio nanoscale trenches in InP: Considerations for photonic applications
    Sultana, N.
    Zhou, Wei
    LaFave, Tim P., Jr.
    MacFarlane, Duncan L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (06): : 2351 - 2356
  • [5] ViPER: simulation software for high aspect ratio plasma etching of silicon
    Valentyn Ishchuk
    Burkhard E. Volland
    Ivo W. Rangelow
    Microsystem Technologies, 2014, 20 : 1791 - 1796
  • [6] Advances in High-Aspect-Ratio Deep Reactive Ion Etching of 4H-Silicon Carbide Wafers
    Li, Ningxin
    Liu, Zhenming
    Lotfi, Ardalan
    Jiang, Xinyu
    Long, Emma
    Sahasrabudhe, Shubham S.
    Bolton, Chris
    Ashraf, Huma
    Ayazi, Farrokh
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2024, 33 (06) : 776 - 784
  • [7] HIGH ASPECT RATIO DEEP SILICON ETCHING
    Owen, K. J.
    VanDerElzen, B.
    Peterson, R. L.
    Najafi, K.
    2012 IEEE 25TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS), 2012,
  • [8] High aspect ratio silicon trench fabrication by inductively coupled plasma
    C. K. Chung
    H. C. Lu
    T. H. Jaw
    Microsystem Technologies, 2000, 6 : 106 - 108
  • [9] A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide
    Racka-Szmidt, Katarzyna
    Stonio, Bartlomiej
    Zelazko, Jaroslaw
    Filipiak, Maciej
    Sochacki, Mariusz
    MATERIALS, 2022, 15 (01)
  • [10] Deep reactive ion etching of sub-micrometer trenches with ultra high aspect ratio
    Parasuraman, Jayalakshmi
    Summanwar, Anand
    Marty, Frederic
    Basset, Philippe
    Angelescu, Dan E.
    Bourouina, Tank
    MICROELECTRONIC ENGINEERING, 2014, 113 : 35 - 39