ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution using the Community Ice Sheet Model

被引:27
作者
Lipscomb, William H. [1 ]
Leguy, Gunter R. [1 ]
Jourdain, Nicolas C. [2 ]
Asay-Davis, Xylar [3 ]
Seroussi, Helene [4 ]
Nowicki, Sophie [5 ,6 ]
机构
[1] Natl Ctr Atmospher Res, Climate & Global Dynam Lab, POB 3000, Boulder, CO 80307 USA
[2] Univ Grenoble Alpes, IGE, CNRS, IRD,G INP, Grenoble, France
[3] Los Alamos Natl Lab, Los Alamos, NM USA
[4] CALTECH, Jet Prop Lab, Pasadena, CA USA
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
[6] Univ Buffalo, Buffalo, NY USA
基金
美国国家科学基金会;
关键词
SEA-LEVEL RISE; GROUNDING LINE RETREAT; PINE ISLAND GLACIER; BASAL MELT RATES; INTERCOMPARISON PROJECT; HIGHER-ORDER; MULTIMODEL ENSEMBLE; EXPERIMENTAL-DESIGN; THWAITES GLACIER; WEST ANTARCTICA;
D O I
10.5194/tc-15-633-2021
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The future retreat rate for marine-based regions of the Antarctic Ice Sheet is one of the largest uncertainties in sea-level projections. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) aims to improve projections and quantify uncertainties by running an ensemble of ice sheet models with atmosphere and ocean forcing derived from global climate models. Here, the Community Ice Sheet Model (CISM) is used to run ISMIP6-based projections of ocean-forced Antarctic Ice Sheet evolution. Using multiple combinations of sub-ice-shelf melt parameterizations and calibrations, CISM is spun up to steady state over many millennia. During the spin-up, basal friction parameters and basin-scale thermal forcing corrections are adjusted to optimize agreement with the observed ice thickness. The model is then run forward for 550 years, from 1950-2500, applying ocean thermal forcing anomalies from six climate models. In all simulations, the ocean forcing triggers long-term retreat of the West Antarctic Ice Sheet, especially in the Filchner-Ronne and Ross sectors. Mass loss accelerates late in the 21st century and then rises steadily for several centuries without leveling off. The resulting ocean-forced sea-level rise at year 2500 varies from about 150 to 1300 mm, depending on the melt scheme and ocean forcing. Further experiments show relatively high sensitivity to the basal friction law, moderate sensitivity to grid resolution and the prescribed collapse of small ice shelves, and low sensitivity to the stress-balance approximation. The Amundsen sector exhibits threshold behavior, with modest retreat under many parameter settings but complete collapse under some combinations of low basal friction and high thermal forcing anomalies. Large uncertainties remain, as a result of parameterized sub-shelf melt rates, simplified treatments of calving and basal friction, and the lack of ice-ocean coupling.
引用
收藏
页码:633 / 661
页数:29
相关论文
共 83 条
[1]  
[Anonymous], 2019, The NCAR command language (version 6.6.2), DOI DOI 10.5065/D6WD3XH5
[2]  
Asay-Davis X. S., 2020, IN PRESS, DOI [10.5194/tc-2020-304, DOI 10.5194/TC-2020-304]
[3]   Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP+), ISOMIP v. 2 (ISOMIP+) and MISOMIP v. 1 (MISOMIP1) [J].
Asay-Davis, Xylar S. ;
Cornford, Stephen L. ;
Durand, Gael ;
Galton-Fenzi, Benjamin K. ;
Gladstone, Rupert M. ;
Gudmundsson, G. Hilmar ;
Hattermann, Tore ;
Holland, David M. ;
Holland, Denise ;
Holland, Paul R. ;
Martin, Daniel F. ;
Mathiot, Pierre ;
Pattyn, Frank ;
Seroussi, Helene .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (07) :2471-2497
[4]   CMIP5 model selection for ISMIP6 ice sheet model forcing: Greenland and Antarctica [J].
Barthel, Alice ;
Agosta, Cecile ;
Little, Christopher M. ;
Hattermann, Tore ;
Jourdain, Nicolas C. ;
Goelzer, Heiko ;
Nowicki, Sophie ;
Seroussi, Helene ;
Straneo, Fiammetta ;
Bracegirdle, Thomas J. .
CRYOSPHERE, 2020, 14 (03) :855-879
[6]  
Computational and Information Systems Laboratory, 2017, NSF National Center for Atmospheric Research, DOI DOI 10.5065/D6RX99HX
[7]   Century-scale simulations of the response of the West Antarctic Ice Sheet to a warming climate [J].
Cornford, S. L. ;
Martin, D. F. ;
Payne, A. J. ;
Ng, E. G. ;
Le Brocq, A. M. ;
Gladstone, R. M. ;
Edwards, T. L. ;
Shannon, S. R. ;
Agosta, C. ;
van den Broeke, M. R. ;
Hellmer, H. H. ;
Krinner, G. ;
Ligtenberg, S. R. M. ;
Timmermann, R. ;
Vaughan, D. G. .
CRYOSPHERE, 2015, 9 (04) :1579-1600
[8]   Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP plus ) [J].
Cornford, Stephen L. ;
Seroussi, Helene ;
Asay-Davis, Xylar S. ;
Gudmundsson, G. Hilmar ;
Arthern, Rob ;
Borstad, Chris ;
Christmann, Julia ;
dos Santos, Thiago Dias ;
Feldmann, Johannes ;
Goldberg, Daniel ;
Hoffman, Matthew J. ;
Humbert, Angelika ;
Kleiner, Thomas ;
Leguy, Gunter ;
Lipscomb, William H. ;
Merino, Nacho ;
Durand, Gael ;
Morlighem, Mathieu ;
Pollard, David ;
Rueckamp, Martin ;
Williams, C. Rosie ;
Yu, Hongju .
CRYOSPHERE, 2020, 14 (07) :2283-2301
[9]   Adaptive mesh, finite volume modeling of marine ice sheets [J].
Cornford, Stephen L. ;
Martin, Daniel F. ;
Graves, Daniel T. ;
Ranken, Douglas F. ;
Le Brocq, Anne M. ;
Gladstone, Rupert M. ;
Payne, Antony J. ;
Ng, Esmond G. ;
Lipscomb, William H. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :529-549
[10]   The Community Earth System Model Version 2 (CESM2) [J].
Danabasoglu, G. ;
Lamarque, J. -F. ;
Bacmeister, J. ;
Bailey, D. A. ;
DuVivier, A. K. ;
Edwards, J. ;
Emmons, L. K. ;
Fasullo, J. ;
Garcia, R. ;
Gettelman, A. ;
Hannay, C. ;
Holland, M. M. ;
Large, W. G. ;
Lauritzen, P. H. ;
Lawrence, D. M. ;
Lenaerts, J. T. M. ;
Lindsay, K. ;
Lipscomb, W. H. ;
Mills, M. J. ;
Neale, R. ;
Oleson, K. W. ;
Otto-Bliesner, B. ;
Phillips, A. S. ;
Sacks, W. ;
Tilmes, S. ;
Van Kampenhout, L. ;
Vertenstein, M. ;
Bertini, A. ;
Dennis, J. ;
Deser, C. ;
Fischer, C. ;
Fox-Kemper, B. ;
Kay, J. E. ;
Kinnison, D. ;
Kushner, P. J. ;
Larson, V. E. ;
Long, M. C. ;
Mickelson, S. ;
Moore, J. K. ;
Nienhouse, E. ;
Polvani, L. ;
Rasch, P. J. ;
Strand, W. G. .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (02)