Computational method for the quantum Hamilton-Jacobi equation: Bound states in one dimension

被引:38
作者
Chou, Chia-Chun [1 ]
Wyatt, Robert E.
机构
[1] Univ Texas, Inst Theoret Chem, Austin, TX 78712 USA
[2] Univ Texas, Dept Chem & Biochem, Austin, TX 78712 USA
关键词
D O I
10.1063/1.2358988
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An accurate computational method for the one-dimensional quantum Hamilton-Jacobi equation is presented. The Mobius propagation scheme, which can accurately pass through singularities, is used to numerically integrate the quantum Hamilton-Jacobi equation for the quantum momentum function. Bound state wave functions are then synthesized from the phase integral using the antithetic cancellation technique. Through this procedure, not only the quantum momentum functions but also the wave functions are accurately obtained. This computational approach is demonstrated through two solvable examples: the harmonic oscillator and the Morse potential. The excellent agreement between the computational and the exact analytical results shows that the method proposed here may be useful for solving similar quantum mechanical problems. (c) 2006 American Institute of Physics.
引用
收藏
页数:10
相关论文
共 76 条
[51]   Periodic quasi-exactly solvable models [J].
Ranjani, SS ;
Kapoor, AK ;
Panigrahi, PK .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (08) :1167-1176
[52]   Bound states and band structure - A unified treatment through the quantum Hamilton-Jacobi approach [J].
Ranjani, SS ;
Kapoor, AK ;
Panigrahi, PK .
ANNALS OF PHYSICS, 2005, 320 (01) :164-174
[53]   Band edge eigenfunctions and eigenvalues for periodic potentials through the quantum Hamilton-Jacobi formalism [J].
Ranjani, SS ;
Kapoor, AK ;
Panigrahi, PK .
MODERN PHYSICS LETTERS A, 2004, 19 (27) :2047-2058
[54]   Bound state wave functions through the quantum Hamilton-Jacobi formalism [J].
Ranjani, SS ;
Geojo, KG ;
Kapoor, AK ;
Panigrahi, PK .
MODERN PHYSICS LETTERS A, 2004, 19 (19) :1457-1468
[55]   Exactly solvable systems and the quantum Hamilton-Jacobi formalism [J].
Rasinariu, C ;
Dykla, JJ ;
Gangopadhyaya, A ;
Mallow, JV .
PHYSICS LETTERS A, 2005, 338 (3-5) :197-202
[56]   A natural approach to the numerical integration of Riccati differential equations [J].
Schiff, J ;
Shnider, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1392-1413
[57]   COUPLED CHANNEL R-MATRIX PROPAGATION METHOD [J].
SCHNEIDER, BI ;
WALKER, RB .
JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (05) :2466-2470
[58]   R-MATRIX SOLUTION OF COUPLED EQUATIONS FOR INELASTIC-SCATTERING [J].
STECHEL, EB ;
WALKER, RB ;
LIGHT, JC .
JOURNAL OF CHEMICAL PHYSICS, 1978, 69 (08) :3518-3531
[59]   Nine formulations of quantum mechanics [J].
Styer, DF ;
Balkin, MS ;
Becker, KM ;
Burns, MR ;
Dudley, CE ;
Forth, ST ;
Gaumer, JS ;
Kramer, MA ;
Oertel, DC ;
Park, LH ;
Rinkoski, MT ;
Smith, CT ;
Wotherspoon, TD .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (03) :288-297
[60]   BOUND-STATE WAVE-FUNCTIONS FROM COUPLED-CHANNEL CALCULATIONS USING LOG-DERIVATIVE PROPAGATORS - APPLICATION TO SPECTROSCOPIC INTENSITIES IN AR-HF [J].
THORNLEY, AE ;
HUTSON, JM .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (07) :5578-5584