Solution of exterior problem using ellipsoidal artificial boundary

被引:10
作者
Huang, Hongying [1 ]
Liu, Dongjie [2 ]
Yu, Dehao [3 ]
机构
[1] Zhejiang Ocean Univ, Sch Math Phys & Informat Sci, Zhoushan 316004, Zhejiang, Peoples R China
[2] Shanghai Univ, Coll Sci, Dept Math, Shanghai 200444, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial boundary method; Ellipsoidal harmonic functions; Exterior problem; Finite element method; Lame functions; Natural boundary reduction; ELEMENT METHODS; FINITE;
D O I
10.1016/j.cam.2009.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a general ellipsoidal artificial boundary method for three-dimensional exterior problem. The exact artificial boundary condition, which is expressed explicitly by the series concerning the ellipsoidal harmonic functions, is derived and then an equivalent problem in a bounded domain is presented. The error estimates show that the convergence rate depends on the mesh parameter, the number of terms used in the exact artificial boundary condition, and the location of the artificial boundary. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:434 / 446
页数:13
相关论文
共 19 条
  • [1] Brezzi F., 1979, Calcolo, V16, P189, DOI 10.1007/BF02575926
  • [2] Costabel M., 1987, BOUNDARY ELEMENTS, P411
  • [3] Feng Fen84 K., 1984, P INT C MATH, V1, P1439
  • [4] Feng K, 1983, P CHIN FRANC S FIN E, P211
  • [5] ON NONREFLECTING BOUNDARY-CONDITIONS
    GROTE, MJ
    KELLER, JB
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 122 (02) : 231 - 243
  • [6] HAN HD, 1990, J COMPUT MATH, V8, P223
  • [7] Hobson E.W., 1955, The theory of spherical and ellipsoidal harmonics
  • [8] Hsiao GC, 1986, INNOVATIVE NUMERICAL, P83
  • [9] Huang HY, 2006, J COMPUT MATH, V24, P193
  • [10] HUANG HY, 2007, THESIS CHINESE ACAD