POSITIVE SOLUTIONS FOR A WEIGHTED FRACTIONAL SYSTEM

被引:0
|
作者
Wang, Pengyan [1 ]
Wang, Yongzhong [1 ]
机构
[1] Northwestern Polytech Univ, Dept Appl Math, Xian 710129, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Weighted fractional system; positive solution; radial symmetry; monotonicity; non-existence; LAPLACIAN; EQUATIONS; DIFFUSION; SYMMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study positive solutions to the system {A(alpha)u(x) = Cn,alpha PV integral(n)(R) a(1) (x - y)(u(x) - u(y))/vertical bar x - y vertical bar(n+alpha) dy = f(u(x), v(x)), B(beta)v(x) = Cn,beta PV integral (n)(R) a(2)(x - y)(v(x) - v(y))/vertical bar x - y vertical bar(n+beta) dy = g(u(x), v (x)). To reach our aim, by using the method of moving planes, we prove a narrow region principle and a decay at infinity by the iteration method. On the basis of these results, we conclude radial symmetry and monotonicity of positive solutions for the problems involving the weighted fractional system on an unit ball and the whole space. Furthermore, non-existence of nonnegative solutions on a half space is given.
引用
收藏
页码:935 / 949
页数:15
相关论文
共 50 条