Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium ! dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus ( Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The latter takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented, and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Because of the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of wavenumbers and to further observe the transition to the turbulent state.
机构:
Columbia Univ, Dept Astron, New York, NY 10027 USAColumbia Univ, Dept Astron, New York, NY 10027 USA
Clark, S. E.
Oishi, Jeffrey S.
论文数: 0引用数: 0
h-index: 0
机构:
Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
Amer Museum Nat Hist, Dept Astrophys, New York, NY 10024 USAColumbia Univ, Dept Astron, New York, NY 10027 USA