Standing waves for nonlinear Schrodinger equations with singular potentials

被引:20
作者
Byeon, Jaeyoung [2 ]
Wang, Zhi-Qiang [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[2] POSTECH, Dept Math, Pohang 790784, Kyungbuk, South Korea
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 03期
关键词
Nonlinear Schrodinger equations; Singularities of potentials; Decaying and unbounded potentials; CRITICAL FREQUENCY; SEMICLASSICAL STATES; BOUND-STATES; EXISTENCE; INFINITY; SPHERES;
D O I
10.1016/j.anihpc.2008.03.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study semiclassical states of nonlinear Schrodinger equations with anisotropic type potentials which may exhibit a combination of vanishing and singularity while allowing decays and unboundedness at infinity. We give existence of spike type standing waves concentrating at the singularities of the potentials. (C) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:943 / 958
页数:16
相关论文
共 22 条
[1]   Radial solutions concentrating on spheres of nonlinear Schrodinger equations with vanishing potentials [J].
Ambrosetti, A. ;
Ruiz, D. .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 :889-907
[2]   Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity [J].
Ambrosetti, A. ;
Malchiodi, A. ;
Ruiz, D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1) :317-348
[3]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[4]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[5]   Singularly perturbed elliptic equations with symmetry: Existence of solutions concentrating on spheres, part I [J].
Ambrosetti, A ;
Malchiodi, A ;
Ni, WM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 235 (03) :427-466
[6]  
[Anonymous], 2006, PROGR MATH
[7]  
Byeon J, 2006, J EUR MATH SOC, V8, P217
[8]   Existence of multi-bump standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Oshita, Y .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (11-12) :1877-1904
[9]   Standing waves with a critical frequency for nonlinear Schrodinger equations, II [J].
Byeon, J ;
Wang, ZQ .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :207-219
[10]   Standing waves with a critical frequency for nonlinear Schrodinger equations [J].
Byeon, J ;
Wang, ZQ .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 165 (04) :295-316