Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress

被引:0
|
作者
Mohasseli, Taher [1 ]
Rahmani, Razgar Seyed [2 ,3 ]
Darvishzadeh, Reza [4 ]
Dezhsetan, Sara [1 ]
Marchal, Kathleen [2 ,3 ,5 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Agr & Nat Resources, Dept Agron & Plant Breeding, Ardebil, Iran
[2] Univ Ghent, Dept Plant Biotechnol & Bioinformat, Ghent, Belgium
[3] Univ Ghent, Dept Informat Technol, IDLab, IMEC, Ghent, Belgium
[4] Urmia Univ, Fac Agr, Dept Plant Prod & Genet, Orumiyeh, Iran
[5] Univ Pretoria, Dept Biochem Genet & Microbiol, Pretoria, South Africa
关键词
De novo expression analysis; RNA-seq; Salt stress; Zea mays; ZEA-MAYS L; SALINITY STRESS; ABSCISIC-ACID; ACCUMULATION; RNA; METABOLISM; MECHANISMS; EXPRESSION; PROGRAM; FAMILY;
D O I
10.1007/s42976-022-00271-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A better understanding of the molecular effects of salinity stress is key to improving salt tolerance in Zea mays. In this study, we combined phenotyping with transcript profiling to study genotype-specific differences in salt tolerance in Zea mays. An extensive phenotypic screening identified two genotypes with extreme phenotypic differences in tolerance toward salt stress. De novo RNA-seq analysis of the selected salt-tolerant (R9) and salt-sensitive (S46) genotype was performed to unveil the molecular mechanisms underlying the differences in salt tolerance between the two genotypes. A number of 5884 and 5556 unique transcripts were identified that were uniquely expressed in the R9 and S46 genotypes, respectively. GO enrichment showed that processes such as cellular response to calcium ion, and regulation of secondary metabolites biosynthesis has been highly diverged between the two genotypes at the transcriptome level. Comparing salt treated with control samples for each genotype showed enrichment for salt tolerance related mechanisms, i.e., potassium ion transport and cation/ion transmembrane transport, in the tolerant genotype only. We hypothesized that more efficient potassium uptake and different response to calcium ions can contribute to better ionic hemostasis and subsequently more salt tolerance for the R9 genotype.
引用
收藏
页码:797 / 810
页数:14
相关论文
共 50 条
  • [1] Comparative transcriptome analysis of two maize genotypes with different tolerance to salt stress
    Taher Mohasseli
    Razgar Seyed Rahmani
    Reza Darvishzadeh
    Sara Dezhsetan
    Kathleen Marchal
    Cereal Research Communications, 2022, 50 : 797 - 810
  • [2] Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance
    Chen, Chengxuan
    Shang, Xiaoling
    Sun, Meiyu
    Tang, Sanyuan
    Khan, Aimal
    Zhang, Dan
    Yan, Hongdong
    Jiang, Yanxi
    Yu, Feifei
    Wu, Yaorong
    Xie, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
  • [3] The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress
    Zahra, Nageen
    Uzair, Muhammad
    Zaid, Imdad Ullah
    Attia, Kotb A.
    Inam, Safeena
    Fiaz, Sajid
    Abdallah, Rizk M.
    Naeem, Muhammad Kashif
    Farooq, Umer
    Rehman, Nazia
    Ali, Ghulam Muhammad
    Xu, Jianlong
    Li, Zhikang
    Khan, Muhammad Ramzan
    MOLECULAR BIOLOGY REPORTS, 2024, 51 (01)
  • [4] Comparative transcriptome analysis reveals molecular regulation of salt tolerance in two contrasting chickpea genotypes
    Khan, Hammad Aziz
    Sharma, Niharika
    Siddique, Kadambot H. M.
    Colmer, Timothy David
    Sutton, Tim
    Baumann, Ute
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [5] Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress
    Li, Qian
    Ma, Changkun
    Tai, Huanhuan
    Qiu, Huan
    Yang, An
    PLOS ONE, 2020, 15 (12):
  • [6] Comparative transcriptome analysis of transcription factors in different maize varieties under salt stress conditions
    Xilong Du
    Gang Wang
    Jing Ji
    Liping Shi
    Chunfeng Guan
    Chao Jin
    Plant Growth Regulation, 2017, 81 : 183 - 195
  • [7] Comparative transcriptome analysis of transcription factors in different maize varieties under salt stress conditions
    Du, Xilong
    Wang, Gang
    Ji, Jing
    Shi, Liping
    Guan, Chunfeng
    Jin, Chao
    PLANT GROWTH REGULATION, 2017, 81 (01) : 183 - 195
  • [8] Comparative proteomic analysis of two sesame genotypes with contrasting salinity tolerance in response to salt stress
    Zhang, Yujuan
    Wei, Mengyuan
    Liu, Aili
    Zhou, Rong
    Li, Donghua
    Dossa, Komivi
    Wang, Linhai
    Zhang, Yanxin
    Gong, Huihui
    Zhang, Xiurong
    You, Jun
    JOURNAL OF PROTEOMICS, 2019, 201 : 73 - 83
  • [9] Comparative Proteomics of Contrasting Maize, Genotypes Provides Insights into Salt-Stress Tolerance Mechanisms
    Luo, Meijie
    Zhao, Yanxin
    Wang, Yuandong
    Shi, Zi
    Zhang, Panpan
    Zhang, Yunxia
    Song, Wei
    Zhao, Jiuran
    JOURNAL OF PROTEOME RESEARCH, 2018, 17 (01) : 141 - 153
  • [10] Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance
    Jitendra Kumar
    Samatha Gunapati
    Shahryar F. Kianian
    Sudhir P. Singh
    Protoplasma, 2018, 255 : 1487 - 1504