RNA sequencing: new technologies and applications in cancer research

被引:357
作者
Hong, Mingye [1 ]
Tao, Shuang [2 ]
Zhang, Ling [3 ]
Diao, Li-Ting [2 ]
Huang, Xuanmei [1 ]
Huang, Shaohui [1 ]
Xie, Shu-Juan [2 ]
Xiao, Zhen-Dong [2 ]
Zhang, Hua [1 ]
机构
[1] Guangdong Med Univ, Inst Lab Med, Sch Med Technol, Guangdong Prov Key Lab Med Mol Diagnost, Dongguan 523808, Peoples R China
[2] Sun Yat sen Univ, Biotherapy Ctr, Affiliated Hosp 3, Guangzhou 510630, Peoples R China
[3] Univ Texas Houston, Hlth Sci Ctr, Houston, TX 77030 USA
基金
中国国家自然科学基金;
关键词
RNA sequencing; Application; Cancer; ACUTE MYELOID-LEUKEMIA; LONG NONCODING RNA; IMMUNE CHECKPOINT BLOCKADE; GENOME-WIDE EXPRESSION; SHORT READ ALIGNMENT; SINGLE-CELL; GENE-EXPRESSION; SEQ DATA; TRANSCRIPTOMIC ANALYSIS; QUALITY-CONTROL;
D O I
10.1186/s13045-020-01005-x
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Over the past few decades, RNA sequencing has significantly progressed, becoming a paramount approach for transcriptome profiling. The revolution from bulk RNA sequencing to single-molecular, single-cell and spatial transcriptome approaches has enabled increasingly accurate, individual cell resolution incorporated with spatial information. Cancer, a major malignant and heterogeneous lethal disease, remains an enormous challenge in medical research and clinical treatment. As a vital tool, RNA sequencing has been utilized in many aspects of cancer research and therapy, including biomarker discovery and characterization of cancer heterogeneity and evolution, drug resistance, cancer immune microenvironment and immunotherapy, cancer neoantigens and so on. In this review, the latest studies on RNA sequencing technology and their applications in cancer are summarized, and future challenges and opportunities for RNA sequencing technology in cancer applications are discussed.
引用
收藏
页数:16
相关论文
共 208 条
[11]   Expression and functional relevance of long non-coding RNAs in acute myeloid leukemia stem cells [J].
Bill, Marius ;
Papaioannou, Dimitrios ;
Karunasiri, Malith ;
Kohlschmidt, Jessica ;
Pepe, Felice ;
Walker, Christopher J. ;
Walker, Allison E. ;
Brannan, Zachary ;
Pathmanathan, Aparna ;
Zhang, Xiaoli ;
Mrozek, Krzysztof ;
LaRocco, Allison ;
Volinia, Stefano ;
Bloomfield, Clara D. ;
Garzon, Ramiro ;
Dorrance, Adrienne M. .
LEUKEMIA, 2019, 33 (09) :2169-2182
[12]   High Expression of lncRNA AFAP1-AS1 Promotes the Progression of Colon Cancer and Predicts Poor Prognosis [J].
Bo, Hao ;
Fan, Liqing ;
Li, Jingjing ;
Liu, Zhizhong ;
Zhang, Shanshan ;
Shi, Lei ;
Guo, Can ;
Li, Xiayu ;
Liao, Qianjin ;
Zhang, Wenling ;
Zhou, Ming ;
Xiang, Bo ;
Li, Xiaoling ;
Li, Guiyuan ;
Xiong, Wei ;
Zeng, Zhaoyang ;
Xiong, Fang ;
Gong, Zhaojian .
JOURNAL OF CANCER, 2018, 9 (24) :4677-4683
[13]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[14]   Optimal clustering with missing values [J].
Boluki, Shahin ;
Dadaneh, Siamak Zamani ;
Qian, Xiaoning ;
Dougherty, Edward R. .
BMC BIOINFORMATICS, 2019, 20 (Suppl 12)
[15]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[16]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[17]   Re-Evaluating Clonal Dominance in Cancer Evolution [J].
Burrell, Rebecca A. ;
Swanton, Charles .
TRENDS IN CANCER, 2016, 2 (05) :263-276
[18]   Comprehensive single-cell transcriptional profiling of a multicellular organism [J].
Cao, Junyue ;
Packer, Jonathan S. ;
Ramani, Vijay ;
Cusanovich, Darren A. ;
Huynh, Chau ;
Daza, Riza ;
Qiu, Xiaojie ;
Lee, Choli ;
Furlan, Scott N. ;
Steemers, Frank J. ;
Adey, Andrew ;
Waterston, Robert H. ;
Trapnell, Cole ;
Shendure, Jay .
SCIENCE, 2017, 357 (6352) :661-667
[19]  
Caruso F, 2020, GIGASCIENCE, P9
[20]  
Chatterjee A, 2018, METHODS MOL BIOL, V1783, P35, DOI 10.1007/978-1-4939-7834-2_3