Failure Mechanism and Interface Engineering for NASICON-Structured All-Solid-State Lithium Metal Batteries

被引:88
|
作者
He, Linchun [1 ]
Sun, Qiaomei [1 ]
Chen, Chao [1 ,2 ]
Oh, Jin An Sam [1 ,4 ,5 ]
Sun, Jianguo [1 ]
Li, Minchan [1 ]
Tu, Wenqiang [1 ]
Zhou, Henghui [3 ]
Zeng, Kaiyang [1 ]
Lu, Li [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[2] Natl Univ Singapore Suzhou Res Inst, Suzhou 215123, Peoples R China
[3] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[4] Natl Univ Singapore, Grad Sch Integrat Sci & Engn, Singapore 138632, Singapore
[5] ASTAR, Singapore Inst Mfg Technol, 2 Fusionopolis Way, Singapore 138634, Singapore
关键词
all-solid-state lithium metal battery; NASICON structure; solid-state electrolyte; failure mechanism; interface; IONIC-CONDUCTIVITY; ELECTROLYTE; TEMPERATURE; STABILITY; ORIGIN; BULK;
D O I
10.1021/acsami.9b05516
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
All-solid-state lithium metal batteries (ASSLiMB) have been considered as one of the most promising next-generation high-energy storage systems that replace liquid organic electrolytes by solid-state electrolytes (SSE). Among many different types of SSE, NASICON-structured Li1+xAlxGe2-x(PO3)(4) (LAGP) shows high a ionic conductivity, high stability against moisture, and wide working electrochemical windows. However, it is unstable when it is in contact with molten Li, hence largely limiting its applications in ASSLiMB. To solve this issue, we have studied reaction processes and mechanisms between LAGP and molten Li, based on which a failure mechanism is hence proposed. With better understanding the failure mechanism, a thin thermosetting Li salt polymer, P(AAco-MA)Li, layer is coated on the bare LAGP pellet before contacting with molten Li. To further increase the ionic conductivity of P(AA-co-MA)Li, LiCl is added in P(AA-co-MA)Li. A symmetric cell of Li/interface/LAGP/interface/Li is prepared using molten Li-Sn alloy and galvanically cycled at current densities of 15, 30, and 70 mu A cm(-2) for 100 cycles, showing stable low overpotentials of 0.036, 0.105, and 0.257 V, respectively. These electrochemical results demonstrate that the interface coating of P(AA-co-MA)Li can be an effective method to avoid an interfacial reaction between the LAGP electrolyte and molten Li.
引用
收藏
页码:20895 / 20904
页数:10
相关论文
共 50 条
  • [41] Advanced Characterization Techniques for Interface in All-Solid-State Batteries
    Li, Yuyu
    Gao, Zhonghui
    Hu, Fei
    Lin, Xing
    Wei, Ying
    Peng, Jian
    Yang, Jiayi
    Li, Zhen
    Huang, Yunhui
    Ding, Han
    SMALL METHODS, 2020, 4 (09):
  • [42] Inorganic All-Solid-State Sodium Batteries: Electrolyte Designing and Interface Engineering
    Yang, Yaxiong
    Yang, Shoumeng
    Xue, Xu
    Zhang, Xianghua
    Li, Qifei
    Yao, Yu
    Rui, Xianhong
    Pan, Hongge
    Yu, Yan
    ADVANCED MATERIALS, 2024, 36 (01)
  • [43] Design principles for interface reaction in all-solid-state batteries
    Li, Xin
    MRS BULLETIN, 2023, 48 (12) : 1230 - 1238
  • [44] Unveiling the role of ring-structured organosulfur additives in solid-state electrolytes for all-solid-state lithium metal batteries
    Lee, Jung Seok
    Hong, Tae Hwa
    Kim, Dong Jun
    Jung, Hyun Wook
    Jung, Han Young
    Moon, Sunhwa
    You, Jungmok
    Lee, Jung Tae
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [45] Efficient nanoarchitectonics of solid-electrolyte-interface for high-performance all-solid-state lithium metal batteries via mild fluorination on polyethylene oxide
    Shen, Jieqing
    Liu, Shuohan
    Bian, Dongyu
    Chen, Zhixin
    Pan, Hui
    Yang, Cheng
    Tian, Wensheng
    Li, Yao
    Kong, Lingti
    Quan, Hengdao
    Wang, Da-Wei
    Zhu, Shenmin
    ELECTROCHIMICA ACTA, 2023, 456
  • [46] Reaction and degradation mechanism in all-solid-state lithium-air batteries
    Kitaura, Hirokazu
    Zhou, Haoshen
    CHEMICAL COMMUNICATIONS, 2015, 51 (99) : 17560 - 17563
  • [47] Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries
    Chi, Shang-Sen
    Liu, Yongchang
    Zhao, Ning
    Guo, Xiangxin
    Nan, Ce-Wen
    Fan, Li-Zhen
    ENERGY STORAGE MATERIALS, 2019, 17 : 309 - 316
  • [48] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46) : 27 - 46
  • [49] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Gan, Yi-Qiang
    Ma, Hai-Jian
    Cui, Da-Wei
    RARE METALS, 2021, 40 (02) : 409 - 416
  • [50] Regenerative Solid Interfaces Enhance High-Performance All-Solid-State Lithium Batteries
    Yu, Zhaoxin
    Xu, Yaobin
    Kindle, Michael
    Marty, Daniel
    Deng, Grace
    Wang, Chongmin
    Xiao, Jie
    Liu, Jun
    Lu, Dongping
    ACS NANO, 2024, 18 (18) : 11955 - 11963