Poster Abstract: A Machine Learning Approach for Vehicle Classification using Passive Infrared and Ultrasonic Sensors

被引:0
作者
Warriach, Ehsan Ullah [1 ]
Claudel, Christian [2 ]
机构
[1] Univ Groningen, Dept Math & Comp Sci, Groningen, Netherlands
[2] King Abdullah Univ Sci & Technol, Dept Elect Engn, Thuwal, Saudi Arabia
来源
2013 ACM/IEEE INTERNATIONAL CONFERENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN) | 2013年
关键词
Vehicle Classification; K-NN; SVM; Naive Bayes; Clustering;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN-SVM significantly outperforms other algorithms in terms of classification accuracy. We also show that some of these algorithms could run in real time on the prototype system.
引用
收藏
页码:333 / 334
页数:2
相关论文
共 4 条
[1]  
CHONG CY, 2003, P IEEE
[2]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297
[3]  
Zhang H, 2004, 15 ECML
[4]  
Zhang H., 2006, IEEE CVPR