Strichartz estimates for partially periodic solutions to Schrodinger equations in 4d and applications

被引:45
作者
Herr, Sebastian [1 ]
Tataru, Daniel [2 ]
Tzvetkov, Nikolay [3 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2014年 / 690卷
基金
美国国家科学基金会;
关键词
COMPACT MANIFOLDS; WELL-POSEDNESS;
D O I
10.1515/crelle-2012-0013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the energy critical nonlinear Schrodinger equation on periodic domains of the form R-m x T4-m with m = 0, 1, 2, 3. Assuming that a certain L-4 Strichartz estimate holds for solutions to the corresponding linear Schrodinger equation, we prove that the nonlinear problem is locally well-posed in the energy space. Then we verify that the L-4 estimate holds if m = 2, 3.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 12 条
[1]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[2]  
Bourgain J., 2011, MOMENT INEQUALITIES
[3]  
Bourgain J., 1993, Geom. Funct. Anal, V3, P157, DOI 10.1007/BF01896021
[4]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[5]  
Cazenave T, 2003, Semilinear Schrodinger Equations
[6]   NONLINEAR SCHRODINGER EQUATION ON FOUR-DIMENSIONAL COMPACT MANIFOLDS [J].
Gerard, Patrick ;
Pierfelice, Vittoria .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2010, 138 (01) :119-151
[7]   Well-posedness and scattering for the KP-II equation in a critical space [J].
Hadac, Martin ;
Herr, Sebastian ;
Koch, Herbert .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :917-941
[8]   GLOBAL WELL-POSEDNESS OF THE ENERGY-CRITICAL NONLINEAR SCHRODINGER EQUATION WITH SMALL INITIAL DATA IN H1 (T3) [J].
Herr, Sebastian ;
Tataru, Daniel ;
Tzvetkov, Nikolay .
DUKE MATHEMATICAL JOURNAL, 2011, 159 (02) :329-349
[9]  
Ionescu A. D., DUKE MATH J IN PRESS
[10]  
Ionescu A. D., COMM MATH P IN PRESS