Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed epidemics on networks are non-negatively correlated

被引:36
作者
Cator, E. [1 ]
Van Mieghem, P. [2 ]
机构
[1] Fac Sci, NL-6500 GL Nijmegen, Netherlands
[2] Delft Univ Technol, Fac Elect Engn Math & Comp Sci, Delft, Netherlands
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 05期
关键词
Malware;
D O I
10.1103/PhysRevE.89.052802
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that the correlation of infection at the same time between any pair of nodes in a network cannot be negative for (exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on networks. The truth of the conjecture establishes that the N-intertwined mean-field approximation (NIMFA) upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe protections against malware spread. However, when the infection or/and curing are not Poisson processes, the infection correlation between two nodes can be negative.
引用
收藏
页数:6
相关论文
共 24 条
[11]   Epidemics in networks of spatially correlated three-dimensional root-branching structures [J].
Handford, T. P. ;
Perez-Reche, F. J. ;
Taraskin, S. N. ;
Costa, L. da F. ;
Miazaki, M. ;
Neri, F. M. ;
Gilligan, C. A. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2011, 8 (56) :423-434
[12]   ADDITIVE SET-VALUED MARKOV-PROCESSES AND GRAPHICAL METHODS [J].
HARRIS, TE .
ANNALS OF PROBABILITY, 1978, 6 (03) :355-378
[13]   Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks [J].
Mata, Angelica S. ;
Ferreira, Silvio C. .
EPL, 2013, 103 (04)
[14]   Protecting Against Network Infections: A Game Theoretic Perspective [J].
Omic, Jasmina ;
Orda, Ariel ;
Van Mieghem, Piet .
IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, :1485-+
[15]   Epidemic dynamics and endemic states in complex networks [J].
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW E, 2001, 63 (06)
[16]   Epidemic spreading in scale-free networks [J].
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3200-3203
[17]  
PASTORSATORRAS R, UNPUB
[18]  
Stam Cornelis J, 2007, Nonlinear Biomed Phys, V1, P3, DOI 10.1186/1753-4631-1-3
[19]   Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks [J].
Van Mieghem, P. ;
van de Bovenkamp, R. .
PHYSICAL REVIEW LETTERS, 2013, 110 (10)
[20]  
Van Mieghem P, EXACT MARKOVIAN SIR