Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination

被引:266
作者
Mahdi, Jasim M. [1 ,2 ]
Nsofor, Emmanuel C. [1 ]
机构
[1] Southern Illinois Univ, Dept Mech Engn & Energy Proc, Carbondale, IL 62901 USA
[2] Univ Baghdad, Dept Energy Engn, Baghdad 10071, Iraq
关键词
Melting; PCM; Triplex-tube; Energy storage; Nanoparticles-metal foam; PHASE-CHANGE MATERIAL; CHANGE MATERIALS PCMS; REDOX FLOW BATTERIES; THERMAL MANAGEMENT; LIQUID DESICCANT; PARAFFIN WAX; PERFORMANCE; POROSITY; SOLIDIFICATION; CONVECTION;
D O I
10.1016/j.apenergy.2016.11.036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Phase change material (PCM) energy storage systems have relatively low thermal conductivity values which greatly reduces the systems' performance. In this study, a compound porous-foam/nanoparticles enhancement technique was used to significantly improve melting of a phase change material (PCM) in a triplex-tube heat exchanger applicable to liquid desiccant air-conditioning systems. A mathematical model that takes into account the non-Darcy effects of porous foam and Brownian motion of nanopartides was formulated and validated with previous related experimental studies. The influence of nanoparticle volume fraction and metal foam porosity on the instantaneous evolution of the solid-liquid interfaces, distribution of isotherms, and liquid-fraction profile under different temperatures of the heat transfer fluid (HTF) were investigated. Results show that dispersing nanoparticles in the presence of metal foams results in melting time savings of up to 90% depending on the foam structure and volumetric nanoparticle concentration. Although the melting time decreases as the porosity decreases and/or volume fraction increases, high-porosity metal foam with low volume-fraction nanoparticles is recommended. This ensures minimal PCM volume reduction and promotes positive contribution of natural convection during the melting process. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 34
页数:13
相关论文
共 48 条
[1]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[2]   Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th .
ENERGY AND BUILDINGS, 2014, 68 :33-41
[3]   Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :684-695
[4]   Experimental study of PCM melting in triplex tube thermal energy storage for liquid desiccant air conditioning system [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th. .
ENERGY AND BUILDINGS, 2013, 60 :270-279
[5]  
Alawadhi EM, 2000, ITHERM 2000 7 INT C, V1
[6]   Conjugate Heat Transfer in Latent Heat Thermal Storage System With Cross Plate Fins [J].
Alayil, Rajesh ;
Balaji, C. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2015, 137 (10)
[7]   Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment [J].
Alshaer, W. G. ;
Nada, S. A. ;
Rady, M. A. ;
Le Bot, Cedric ;
Del Barrio, Elena Palomo .
ENERGY CONVERSION AND MANAGEMENT, 2015, 89 :873-884
[8]  
[Anonymous], 1995, PRINCIPLES HEAT TRAN
[9]   Numerical study on melting of paraffin wax with Al2O3 in a square enclosure [J].
Arasu, A. Valan ;
Mujumdar, Arun S. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (01) :8-16
[10]   Effect of porosity of conducting matrix on a phase change energy storage device [J].
Atal, Aditya ;
Wang, Yuping ;
Harsha, Mayur ;
Sengupta, Subrata .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 93 :9-16