Reset integral control for improved settling of PID-based motion systems with friction

被引:30
作者
Beerens, R. [1 ]
Bisoffi, A. [2 ]
Zaccarian, L. [3 ,4 ]
Heemels, W. P. M. H. [1 ]
Nijmeijer, H. [1 ]
van de Wouw, N. [1 ,5 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] KTH Royal Inst Technol, Div Decis & Control Syst, SE-10044 Stockholm, Sweden
[3] Univ Toulouse, LAAS, CNRS, F-31400 Toulouse, France
[4] Univ Trento, I-38122 Trento, Italy
[5] Univ Minnesota, Civil Environm & Geoengn Dept, Minneapolis, MN 55455 USA
关键词
Transient performance; Hybrid control; Motion control; Friction; Stability; DESIGN;
D O I
10.1016/j.automatica.2019.06.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a reset control approach to improve the transient performance of a PID-controlled motion system subject to Coulomb and viscous friction. A reset integrator is applied to circumvent the depletion and refilling process of a linear integrator when the solution overshoots the setpoint, thereby significantly reducing the settling time. Robustness for unknown static friction levels is obtained. The closed-loop system is formulated through a hybrid systems framework, within which stability is proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. The working principle of the proposed reset controller is analyzed in an experimental benchmark study of an industrial high-precision positioning machine. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 28 条
[11]   Design of Hybrid Resetting PID and Lag Controllers with Application to Motion Control [J].
El Rifai, Khalid ;
El Rifai, Osamah .
2009 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1-3, 2009, :685-692
[12]   LuGre-Model-Based Friction Compensation [J].
Freidovich, Leonid ;
Robertsson, Anders ;
Shiriaev, Anton ;
Johansson, Rolf .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2010, 18 (01) :194-200
[13]  
Goebel R., 2012, Hybrid Dynamical Systems: Modeling, Stability, and Robustness
[14]   Recovering a function from a Dini derivative [J].
Hagood, JW ;
Thomson, BS .
AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (01) :34-46
[15]   Friction induced hunting limit cycles: A comparison between the LuGre and switch friction model [J].
Hensen, RHA ;
van de Molengraft, MJG ;
Steinbuch, M .
AUTOMATICA, 2003, 39 (12) :2131-2137
[16]   NONLINEAR DESIGN FOR COST OF FEEDBACK REDUCTION IN SYSTEMS WITH LARGE PARAMETER UNCERTAINTY [J].
HOROWITZ, I ;
ROSENBAUM, P .
INTERNATIONAL JOURNAL OF CONTROL, 1975, 21 (06) :977-1001
[17]   Averaging of nonsmooth systems using dither [J].
Iannelli, L ;
Johansson, KH ;
Jönsson, UT ;
Vasca, F .
AUTOMATICA, 2006, 42 (04) :669-676
[18]   Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction [J].
Makkar, C. ;
Hu, G. ;
Sawyer, W. G. ;
Dixon, W. E. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (10) :1988-1994
[19]   Stability properties of reset systems [J].
Nesic, Dragan ;
Zaccarian, Luca ;
Teel, Andrew R. .
AUTOMATICA, 2008, 44 (08) :2019-2026
[20]   Stability and Performance of SISO Control Systems With First-Order Reset Elements [J].
Nesic, Dragan ;
Teel, Andrew R. ;
Zaccarian, Luca .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2567-2582