Reset integral control for improved settling of PID-based motion systems with friction

被引:30
作者
Beerens, R. [1 ]
Bisoffi, A. [2 ]
Zaccarian, L. [3 ,4 ]
Heemels, W. P. M. H. [1 ]
Nijmeijer, H. [1 ]
van de Wouw, N. [1 ,5 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
[2] KTH Royal Inst Technol, Div Decis & Control Syst, SE-10044 Stockholm, Sweden
[3] Univ Toulouse, LAAS, CNRS, F-31400 Toulouse, France
[4] Univ Trento, I-38122 Trento, Italy
[5] Univ Minnesota, Civil Environm & Geoengn Dept, Minneapolis, MN 55455 USA
关键词
Transient performance; Hybrid control; Motion control; Friction; Stability; DESIGN;
D O I
10.1016/j.automatica.2019.06.017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a reset control approach to improve the transient performance of a PID-controlled motion system subject to Coulomb and viscous friction. A reset integrator is applied to circumvent the depletion and refilling process of a linear integrator when the solution overshoots the setpoint, thereby significantly reducing the settling time. Robustness for unknown static friction levels is obtained. The closed-loop system is formulated through a hybrid systems framework, within which stability is proven using a discontinuous Lyapunov-like function and a meagre-limsup invariance argument. The working principle of the proposed reset controller is analyzed in an experimental benchmark study of an industrial high-precision positioning machine. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:483 / 492
页数:10
相关论文
共 28 条
[1]   Performance analysis of reset control systems [J].
Aangenent, W. H. T. M. ;
Witvoet, G. ;
Heemels, W. P. M. H. ;
van de Molengraft, M. J. G. ;
Steinbuch, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (11) :1213-1233
[2]  
Armstrong-Helouvry B., 1992, CONTROL MACHINES FRI
[3]   A SURVEY OF MODELS, ANALYSIS TOOLS AND COMPENSATION METHODS FOR THE CONTROL OF MACHINES WITH FRICTION [J].
ARMSTRONGHELOUVRY, B ;
DUPONT, P ;
DEWIT, CC .
AUTOMATICA, 1994, 30 (07) :1083-1138
[4]   A survey of applications of second-order sliding mode control to mechanical systems [J].
Bartolini, G ;
Pisano, A ;
Punta, E ;
Usai, E .
INTERNATIONAL JOURNAL OF CONTROL, 2003, 76 (9-10) :875-892
[5]  
Beerens R, 2018, P AMER CONTR CONF, P539, DOI 10.23919/ACC.2018.8431613
[6]   Set-point Control of Motion Systems with Uncertain Set-valued Stribeck Friction [J].
Beerens, Ruud ;
Nijmeijer, Henk ;
Heemels, Maurice ;
van de Wouw, Nathan .
IFAC PAPERSONLINE, 2017, 50 (01) :2965-2970
[7]  
Bisoffi A., 2018, IEEE T AUTOMATION CO
[8]  
Clarke F. H., 1990, OPTIMIZATION NONSMOO
[9]  
Clegg J., 1958, American Institute of Electrical Engineers, V77, P41
[10]  
Deenen DA, 2017, P AMER CONTR CONF, P2863, DOI 10.23919/ACC.2017.7963385