SEMIDISCRETE FINITE ELEMENT ANALYSIS OF TIME FRACTIONAL PARABOLIC PROBLEMS: A UNIFIED APPROACH

被引:19
作者
Karaa, Samir [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, Al Khod 123, Muscat, Oman
关键词
time-fractional parabolic equation; multiterm fractional diffusion; semidiscrete finite element scheme; optimal error estimates; mixed method; nonsmooth initial data; GALERKIN METHODS; NUMERICAL-SOLUTION; ERROR ANALYSIS; DIFFUSION; EQUATIONS; QUADRATURE; FEM;
D O I
10.1137/17M1134160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the numerical approximation of time-fractional parabolic problems involving Caputo derivatives in time of order alpha, 0 < alpha < 1. We derive optimal error estimates for semidiscrete Galerkin finite element (FE) type approximations for problems with smooth and nonsmooth initial data. Our analysis relies on energy arguments and exploits the properties of the inverse of the associated elliptic operator. We present the analysis in a general setting so that it is easily applicable to various spatial approximations such as conforming and nonconforming FE methods (FEMs) and FEM on nonconvex domains. The finite element approximation in mixed form is also presented and new error estimates are established for smooth and nonsmooth initial data. Finally, an extension of our analysis to a multiterm time-fractional model is discussed.
引用
收藏
页码:1673 / 1692
页数:20
相关论文
共 39 条
[1]  
[Anonymous], 2007, FINITE ELEMENTE
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]   SOME CONVERGENCE ESTIMATES FOR SEMI-DISCRETE GALERKIN TYPE APPROXIMATIONS FOR PARABOLIC EQUATIONS [J].
BRAMBLE, JH ;
SCHATZ, AH ;
THOMEE, V ;
WAHLBIN, LB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (02) :218-241
[5]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[6]  
Chatzipantelidis P., 2016, BIT, V46, P113
[7]  
Chen CM, 2012, MATH COMPUT, V81, P345, DOI 10.1090/S0025-5718-2011-02447-6
[8]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO, V40
[9]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[10]   Convolution quadrature time discretization of fractional diffusion-wave equations [J].
Cuesta, E ;
Lubich, C ;
Palencia, C .
MATHEMATICS OF COMPUTATION, 2006, 75 (254) :673-696