A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation

被引:44
作者
Carrillo, Jose A. [1 ]
Murakawa, Hideki [2 ]
Sato, Makoto [3 ]
Togashi, Hideru [4 ]
Trush, Olena [5 ]
机构
[1] Imperial Coll London, Dept Math, South Kensington Campus, London SW7 2AZ, England
[2] Ryukoku Univ, Dept Appl Math & Informat, Seta, Otsu 5202194, Japan
[3] Kanazawa Univ, Inst Frontier Sci Initiat, Grad Sch Med Sci, Lab Dev Neurobiol,Math Neurosci Unit, 13-1 Takaramachi, Kanazawa, Ishikawa 9208640, Japan
[4] Kobe Univ, Div Mol & Cellular Biol, Dept Biochem & Mol Biol, Grad Sch Med,Chuo Ku, 7-5-1 Kusunoki Cho, Kobe, Hyogo 6500017, Japan
[5] Kanazawa Univ, Grad Sch Med Sci, Lab Dev Neurobiol, 13-1 Takaramachi, Kanazawa, Ishikawa 9208640, Japan
基金
英国工程与自然科学研究理事会;
关键词
Cell-cell adhesion; Cell sorting; Mathematical model; TISSUE RECONSTRUCTION; DISSOCIATED CELLS; INTERACTING PARTICLES; NONLOCAL MODELS; AGGREGATION; MECHANISM; PATTERN; NECTIN; LONG; SIMULATION;
D O I
10.1016/j.jtbi.2019.04.023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We discuss several continuum cell-cell adhesion models based on the underlying microscopic assumptions. We propose an improvement on these models leading to sharp fronts and intermingling invasion fronts between different cell type populations. The model is based on basic principles of localized repulsion and nonlocal attraction due to adhesion forces at the microscopic level. The new model is able to capture both qualitatively and quantitatively experiments by Katsunuma et al. (2016). We also review some of the applications of these models in other areas of tissue growth in developmental biology. We finally explore the resulting qualitative behavior due to cell-cell repulsion. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 52 条
  • [1] Vertex models: from cell mechanics to tissue morphogenesis
    Alt, Silvanus
    Ganguly, Poulami
    Salbreux, Guillaume
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2017, 372 (1720)
  • [2] A continuum approach to modelling cell-cell adhesion
    Armstrong, Nicola J.
    Painter, Kevin J.
    Sherratt, Jonathan A.
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2006, 243 (01) : 98 - 113
  • [3] Blow-up in multidimensional aggregation equations with mildly singular interaction kernels
    Bertozzi, Andrea L.
    Carrillo, Jose A.
    Laurent, Thomas
    [J]. NONLINEARITY, 2009, 22 (03) : 683 - 710
  • [4] A free boundary problem arising in a simplified tumour growth model of contact inhibition
    Bertsch, M.
    Dal Passo, R.
    Mimura, M.
    [J]. INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) : 235 - 250
  • [5] Friction dominated dynamics of interacting particles locally close to a crystallographic lattice
    Bodnar, M.
    Velazquez, J. J. L.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (10) : 1206 - 1228
  • [6] Burger M., 2017, ARXIV170404179
  • [7] On an aggregation model with long and short range interactions
    Burger, Martin
    Capasso, Vincenzo
    Morale, Daniela
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (03) : 939 - 958
  • [8] Stationary States and Asymptotic Behavior of Aggregation Models with Nonlinear Local Repulsion
    Burger, Martin
    Fetecau, Razvan
    Huang, Yanghong
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (01): : 397 - 424
  • [9] A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis
    Buttenschon, Andreas
    Hillen, Thomas
    Gerisch, Alf
    Painter, Kevin J.
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 76 (1-2) : 429 - 456
  • [10] Volume effects in the Keller-Segel model: energy estimates preventing blow-up
    Calvez, Vincent
    Carrillo, Jose A.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 155 - 175