In Situ Chemical Oxidation of Contaminated Groundwater by Persulfate: Decomposition by Fe(III)- and Mn(IV)-Containing Oxides and Aquifer Materials

被引:386
作者
Liu, Haizhou [1 ]
Bruton, Thomas A. [1 ]
Doyle, Fiona M. [2 ]
Sedlak, David L. [1 ]
机构
[1] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
关键词
HYDROGEN-PEROXIDE DECOMPOSITION; ACTIVATED PERSULFATE; PERFLUOROCARBOXYLIC ACIDS; EFFICIENT DECOMPOSITION; POTASSIUM-PERMANGANATE; CHLORINATED ETHYLENES; AQUEOUS-SOLUTIONS; RATE CONSTANTS; KINETICS; DEGRADATION;
D O I
10.1021/es502056d
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Persulfate (S2O82-) is being used increasingly for in situ chemical oxidation (ISCO) of organic contaminants in groundwater, despite an incomplete understanding of the mechanism through which it is converted into reactive species. In particular, the decomposition of persulfate by naturally occurring mineral surfaces has not been studied in detail. To gain insight into the reaction rates and mechanism of persulfate decomposition in the subsurface, and to identify possible approaches for improving its efficacy, the decomposition of persulfate was investigated in the presence of pure metal oxides, clays, and representative aquifer solids collected from field sites in the presence and absence of benzene. Under conditions typical of groundwater, Fe(III)- and Mn(IV)-oxides catalytically converted persulfate into sulfate radical (SO4 center dot-) and hydroxyl radical (HO center dot) over time scales of several weeks at rates that were 2-20 times faster than those observed in metal-free systems. Amorphous ferrihydrite was the most reactive iron mineral with respect to persulfate decomposition, with reaction rates proportional to solid mass and surface area. As a result of radical chain reactions, the rate of persulfate decomposition increased by as much as 100 times when benzene concentrations exceeded 0.1 mM. Due to its relatively slow rate of decomposition in the subsurface, it can be advantageous to inject persulfate into groundwater, allowing it to migrate to zones of low hydraulic conductivity where clays, metal oxides, and contaminants will accelerate its conversion into reactive oxidants.
引用
收藏
页码:10330 / 10336
页数:7
相关论文
共 54 条
[1]   Persulfate activation by subsurface minerals [J].
Ahmad, Mushtaque ;
Teel, Amy L. ;
Watts, Richard J. .
JOURNAL OF CONTAMINANT HYDROLOGY, 2010, 115 (1-4) :34-45
[2]   Disinfection of Ballast Water with Iron Activated Persulfate [J].
Ahn, Samyoung ;
Peterson, Tawnya D. ;
Righter, Jason ;
Miles, Danielle M. ;
Tratnyek, Paul G. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (20) :11717-11725
[3]   Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials [J].
Anh Le-Tuan Pham ;
Doyle, Fiona M. ;
Sedlak, David L. .
WATER RESEARCH, 2012, 46 (19) :6454-6462
[4]   Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions [J].
Anipsitakis, GP ;
Dionysiou, DD ;
Gonzalez, MA .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (03) :1000-1007
[5]   Radical generation by the interaction of transition metals with common oxidants [J].
Anipsitakis, GP ;
Dionysiou, DD .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2004, 38 (13) :3705-3712
[6]  
[Anonymous], 2013, Alternatives for managing the Nation's complex contaminated groundwater sites
[7]   Intermediates and Reaction Pathways from the Degradation of Microcystin-LR with Sulfate Radicals [J].
Antoniou, Maria G. ;
de la Cruz, Armah A. ;
Dionysiou, Dionysios D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (19) :7238-7244
[8]   PCE Oxidation by Sodium Persulfate in the Presence of Solids [J].
Costanza, Jed ;
Otano, Gretell ;
Callaghan, John ;
Pennell, Kurt D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (24) :9445-9450
[9]   Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation [J].
Das, TN .
JOURNAL OF PHYSICAL CHEMISTRY A, 2001, 105 (40) :9142-9155
[10]   Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate [J].
Deng, Yang ;
Ezyske, Casey M. .
WATER RESEARCH, 2011, 45 (18) :6189-6194