Modified Minimal Error Method for Nonlinear Ill-Posed Problems

被引:0
作者
Sabari, M. [1 ]
George, Santhosh [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Math & Computat Sci, Mangaluru 575025, India
关键词
Nonlinear Ill-Posed Problem; Minimal Error Method; Regularization Method; Discrepancy Principle; LAVRENTIEV REGULARIZATION; TIKHONOV REGULARISATION; CONVERGENCE-RATES; INVERSE PROBLEMS; EQUATIONS;
D O I
10.1515/cmam-2017-0024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An error estimate for the minimal error method for nonlinear ill-posed problems under general a Holder-type source condition is not known. We consider a modified minimal error method for nonlinear ill-posed problems. Using a Holder-type source condition, we obtain an optimal order error estimate. We also consider the modified minimal error method with noisy data and provide an error estimate.
引用
收藏
页码:313 / 321
页数:9
相关论文
共 21 条
[1]  
Argyros I. K., 2014, INT J MATH MATH SCI, V2014
[2]  
Engl H.W., 1993, Surv. Math. Ind, V3, P71
[3]  
Engl H.W., 2000, MATH APPL
[4]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[5]   A modified Newton-Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations [J].
George, Santhosh ;
Nair, A. Thamban .
JOURNAL OF COMPLEXITY, 2008, 24 (02) :228-240
[6]   A derivative-free iterative method for nonlinear ill-posed equations with monotone operators [J].
George, Santhosh ;
Nair, M. Thamban .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2017, 25 (05) :543-551
[7]   Convergence rate results for steepest descent type method for nonlinear ill-posed equations [J].
George, Santhosh ;
Sabari, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 294 :169-179
[8]   On convergence of regularized modified Newton's method for nonlinear ill-posed problems [J].
George, Santhosh .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2010, 18 (02) :133-146
[9]  
Gilyazov S., 1997, MOSCOW U COMP MATH C, V1, P8
[10]   A CONVERGENCE ANALYSIS OF THE LANDWEBER ITERATION FOR NONLINEAR ILL-POSED PROBLEMS [J].
HANKE, M ;
NEUBAUER, A ;
SCHERZER, O .
NUMERISCHE MATHEMATIK, 1995, 72 (01) :21-37