Physical programming for preference driven evolutionary multi-objective optimization

被引:43
作者
Reynoso-Meza, Gilberto [1 ]
Sanchis, Javier [1 ]
Blasco, Xavier [1 ]
Garcia-Nieto, Sergio [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Automat & Informat Ind, Valencia 46022, Spain
关键词
Multi-objective optimization design procedure; Evolutionary multi-objective optimization; Physical programming; Many-objective optimization; Preference articulation; Decision making; PARTICLE SWARM OPTIMIZATION; DECISION-MAKING; CURRENT TRENDS; ALGORITHMS; SELECTION;
D O I
10.1016/j.asoc.2014.07.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Preference articulation in multi-objective optimization could be used to improve the pertinency of solutions in an approximated Pareto front. That is, computing the most interesting solutions from the designer's point of view in order to facilitate the Pareto front analysis and the selection of a design alternative. This articulation can be achieved in an a priori, progressive, or a posteriori manner. If it is used within an a priori frame, it could focus the optimization process toward the most promising areas of the Pareto front, saving computational resources and assuring a useful Pareto front approximation for the designer. In this work, a physical programming approach embedded in an evolutionary multi-objective optimization is presented as a tool for preference inclusion. The results presented and the algorithm developed validate the proposal as a potential tool for engineering design by means of evolutionary multi-objective optimization. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:341 / 362
页数:22
相关论文
共 68 条
[1]  
[Anonymous], 1997, Journal of Global Optimization, DOI DOI 10.1023/A:1008202821328
[2]  
[Anonymous], 2002, Evolutionary algorithms for solving multi-objective problems
[3]  
[Anonymous], 2007, EVOLUTIONARY ALGORIT
[4]  
[Anonymous], 2006, INT J COMPUT INTELL, DOI DOI 10.5019/J.IJCIR.2006.67
[5]  
[Anonymous], SIAM J OPTIM
[6]  
Aslam T., 2010, 8th International Conference on Supply Chain Management and Information Systems SCMIS, 6- 9 October 2010, P1
[7]   HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization [J].
Bader, Johannes ;
Zitzler, Eckart .
EVOLUTIONARY COMPUTATION, 2011, 19 (01) :45-76
[8]  
Batista LS, 2011, LECT NOTES COMPUT SC, V6576, P76, DOI 10.1007/978-3-642-19893-9_6
[9]   A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization [J].
Blasco, X. ;
Herrero, J. M. ;
Sanchis, J. ;
Martinez, M. .
INFORMATION SCIENCES, 2008, 178 (20) :3908-3924
[10]   Results of the Control Engineering Contest 2012 and Notice 2013 [J].
Blasco, Xavier ;
Reynoso-Meza, Gilberto ;
Garcia-Nieto, Sergio .
REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2013, 10 (02) :240-244