Computational methods for discrete hidden semi-Markov chains

被引:0
|
作者
Guédon, Y [1 ]
机构
[1] CIRAD, Programme Modelisat Plantes, F-34032 Montpellier 1, France
关键词
counting distributions; hidden semi-Markov chain; interval distributions; renewal theory;
D O I
10.1002/(SICI)1526-4025(199907/09)15:3<195::AID-ASMB376>3.3.CO;2-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We propose a computational approach for implementing discrete hidden semi-Markov chains. A discrete hidden semi-Markov chain is composed of a non-observable or hidden process which is a finite semi-Markov chain and a discrete observable process. Hidden semi-Markov chains possess both the flexibility of hidden Markov chains for approximating complex probability distributions and the flexibility of semi-Markov chains for representing temporal structures. Efficient algorithms for computing characteristic distributions organized according to the intensity, interval and counting points of view are-described. The proposed computational approach in conjunction with statistical inference algorithms previously proposed makes discrete hidden semi-Markov chains a powerful model for the analysis of samples of non-stationary discrete sequences. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:195 / 224
页数:30
相关论文
共 50 条
  • [41] Using Hidden Semi-Markov Chains to Compare the Shoot Structure of Three Different Almond Cultivars
    Negron, C.
    Contador, M. L.
    Lampinen, B. D.
    Metcalf, S. G.
    Guedon, Y.
    Costes, E.
    DeJong, T. M.
    IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 67 - 75
  • [42] ON DISCRETE-TIME SEMI-MARKOV PROCESSES
    Pachon, Angelica
    Polito, Federico
    Ricciuti, Costantino
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1499 - 1529
  • [43] hhsmm: an R package for hidden hybrid Markov/semi-Markov models
    Morteza Amini
    Afarin Bayat
    Reza Salehian
    Computational Statistics, 2023, 38 : 1283 - 1335
  • [44] Scalable Bayesian Inference for Coupled Hidden Markov and Semi-Markov Models
    Touloupou, Panayiota
    Finkenstadt, Barbel
    Spencer, Simon E. F.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2020, 29 (02) : 238 - 249
  • [45] A Spectral Algorithm for Inference in Hidden semi-Markov Models
    Melnyk, Igor
    Banerjee, Arindam
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 690 - 698
  • [46] biomvRhsmm: Genomic Segmentation with Hidden Semi-Markov Model
    Du, Yang
    Murani, Eduard
    Ponsuksili, Siriluck
    Wimmers, Klaus
    BIOMED RESEARCH INTERNATIONAL, 2014, 2014
  • [47] On rainfall seasonality using a hidden semi-Markov model
    Sansom, John
    Thomson, Peter
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D15)
  • [48] Computational Algorithms for Moments of Accumulated Markov and Semi-Markov Rewards
    Silvestrov, Dmitrii
    Manca, Raimondo
    Silvestrova, Evelina
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (07) : 1453 - 1469
  • [49] Structured Inference for Recurrent Hidden Semi-Markov Model
    Liu, Hao
    He, Lirong
    Bai, Haoli
    Dai, Bo
    Bai, Kun
    Xu, Zenglin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2447 - 2453
  • [50] Offline and online identification of hidden semi-Markov models
    Azimi, M
    Nasiopoulos, P
    Ward, RK
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 2658 - 2663